

Mathematics

Advanced GCE A2 7890 - 2

Advanced Subsidiary GCE AS 3890 - 2

Mark Schemes for the Units

January 2010

3890-2/7890-2/MS/10J

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

CONTENTS

Advanced GCE Mathematics (7890) Advanced GCE Pure Mathematics (7891) Advanced GCE Further Mathematics (7892)

Advanced Subsidiary GCE Mathematics (3890) Advanced Subsidiary GCE Pure Mathematics (3891) Advanced Subsidiary GCE Further Mathematics (3892)

MARK SCHEMES FOR THE UNITS

Unit/Content	Page
4721 Core Mathematics 1	1
4722 Core Mathematics 2	5
4723 Core Mathematics 3	9
4724 Core Mathematics 4	13
4725 Further Pure Mathematics 1	17
4726 Further Pure Mathematics 2	21
4727 Further Pure Mathematics 3	24
4728 Mechanics 1	28
4729 Mechanics 2	31
4730 Mechanics 3	34
4732 Probability & Statistics 1	37
4733 Probability & Statistics 2	40
4734 Probability & Statistics 3	43
4736 Decision Mathematics 1	46
4737 Decision Mathematics 2	52
Grade Thresholds	58

January 2 Mainscioud.com Mark Scheme **4721 Core Mathematics 1** 1 R1 $6)^{2}$

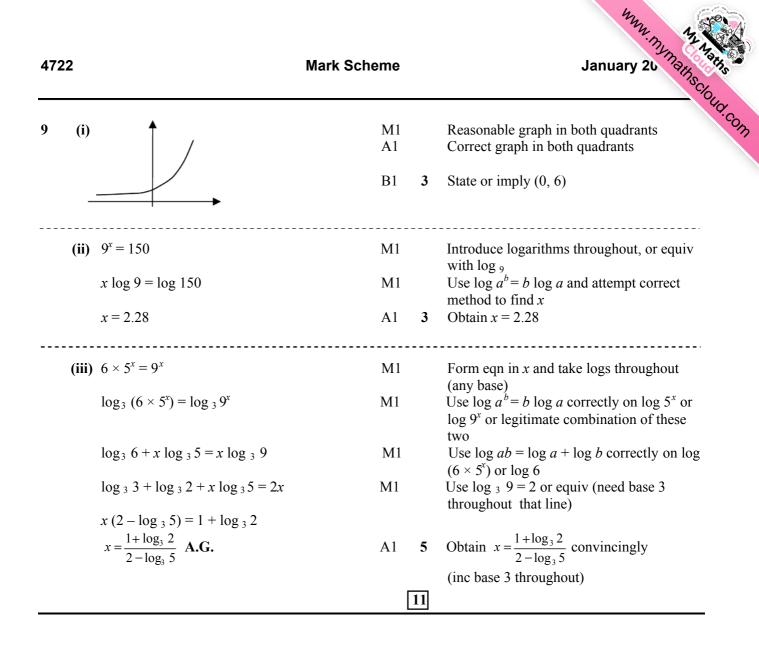
1			B1		$(x-6)^2$
1		$[(x-6)^2 - 36] + 1$ = (x-6)^2 - 35			$q = 1 - (\text{their } p)^2$
		=(x-6) -35	M1		q = -35
			A1	3	<i>q</i> 55
				3	
2	(i)				
		3	B1		For $x < 0$, straight line joining $(-2, 0)$ and $(0, 4)$
		-2 -1 0 1 2 3 4	B1	2	For $x > 0$, line joining (0,4) to (2, 2) and horizontal line joining (2,2) and (4,2)
	(ii)	Translation 1 unit right parallel to <i>x</i> axis	B1 B1	2	Allow: 1 unit right, 1 along the x axis,
					1 in <i>x</i> direction, allow vector notation e.g. $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$,
				4	1 unit horizontally
3		$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 8x$	M1		Attempt to differentiate (one of $3x^2$, $-8x$)
			A1		Correct derivative
		When $x = 2$, $\frac{dy}{dx} = -4$	M1 A1		Substitutes $x = 2$ into their $\frac{dy}{dx}$
		: Gradient of normal to curve = $\frac{1}{4}$	B1 ft		Must be numerical $= -1 \div$ their <i>m</i>
		$y+1 = \frac{1}{4}(x-2)$	M1		Correct equation of straight line through $(2, -1)$, any non-zero numerical gradient
		x - 4y - 6 = 0	A1	7	Correct equation in required form

				mm. m.	2
1	Mark Scheme			January in an	5
(i)	m = 4	B1	1	May be embedded	S
(ii)	$6p^2 = 24$ $p^2 = 4$	M1		$(\pm)6p^2 = 24$ or $36p^4 = 576$.con
	*	A1			
	or $p = -2$	A1	3		
(iii)	$5^{2n+4} = 25$	M1		Addition of indices as powers of 5	
	$\therefore 2n+4=2$	M1	3	Equate powers of 5 or 25	
	n = -1	A1	2		
	$k = \sqrt{x}$		<u> </u>		
	$k^2 - 8k + 13 = 0$	M1*		Use a substitution to obtain a quadratic (may be implied by squaring or rooting later) or factorise into 2 brackets each containing \sqrt{x}	
	$k - 4 = \pm \sqrt{3}$ or $k = \frac{8 \pm \sqrt{(-8)^2 - 4 \times 1 \times 13}}{2}$	M1 dep A1		Correct method to solve resulting quadratic	
	$k = 4 \pm \sqrt{3}$	A1		$k = 4 \pm \sqrt{3} \text{or} k = \frac{8 \pm \sqrt{12}}{2}$ or $k = 4 \pm \frac{\sqrt{12}}{2}$	
	: $x = (4 + \sqrt{3})^2$ or $x = (4 - \sqrt{3})^2$	M1		Recognise the need to square to obtain x	
		M1		Correct method for squaring $a + \sqrt{b}$ (3 or 4 term expansion)	
	$x = 19 \pm 8\sqrt{3}$ or $19 \pm 4\sqrt{12}$	A1	7 7		
(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x$	B1*			
	When $x = 1$, $\frac{dy}{dx} = 2$	B1 dep	2		
(ii)	$\frac{a^2 + 5 - 6}{a - 1} = 2.3$	M1		uses $\frac{y_2 - y_1}{x_2 - x_1}$	
	u - 1	A1		correct expression	
	$a^2 - 2.3a + 1.3 = 0$	M1		correct method to solve a	
	(a-1.3)(a-1) = 0			quadratic or correct factorisation and cancelling to get $a + 1 = 2.3$	
	<i>a</i> =1.3	A1	4	1.3 only	
	(ii) (iii) (i)	(i) $m=4$ (ii) $6p^2 = 24$ $p^{2}=4$ p=2 or p = -2 (iii) $5^{2n+4} = 25$ $\therefore 2n+4=2$ n=-1 $k = \sqrt{x}$ $k^2 - 8k + 13 = 0$ $k - 4 = \pm \sqrt{3}$ or $k = \frac{8 \pm \sqrt{(-8)^2 - 4 \times 1 \times 13}}{2}$ $k = 4 \pm \sqrt{3}$ $\therefore x = (4 + \sqrt{3})^2$ or $x = (4 - \sqrt{3})^2$ $x = 19 \pm 8\sqrt{3}$ or $19 \pm 4\sqrt{12}$ (i) $\frac{dy}{dx} = 2x$ When $x = 1$, $\frac{dy}{dx} = 2$ (ii) $\frac{a^2 + 5 - 6}{a - 1} = 2.3$ $a^2 - 2.3a + 1.3 = 0$ (a - 1.3)(a - 1) = 0	(i) $m=4$ B1 (ii) $6p^2 = 24$ M1 $p^2 = 4$ $p = 2$ A1 or p = -2 A1 (iii) $5^{2n+4} = 25$ M1 $\therefore 2n+4 = 2$ M1 n=-1 A1 $k = \sqrt{x}$ $k^2 - 8k + 13 = 0$ M1* $k = 4 \pm \sqrt{3}$ or $k = \frac{8 \pm \sqrt{(-8)^2 - 4 \times 1 \times 13}}{2}$ M1 $k = 4 \pm \sqrt{3}$ A1 $\therefore x = (4 + \sqrt{3})^2$ or $x = (4 - \sqrt{3})^2$ M1 $x = 19 \pm 8\sqrt{3}$ or $19 \pm 4\sqrt{12}$ A1 (i) $\frac{dy}{dx} = 2x$ B1* When $x = 1, \frac{dy}{dx} = 2$ B1 dep = 2 B1 $a^2 - 2.3a + 1.3 = 0$ M1 $a^2 - 2.3a + 1.3 = 0$ M1	(i) $m=4$ BI 1 (ii) $6p^2 = 24$ MI $p^2 = 4$ AI 3 or p = -2 AI 3 (iii) $5^{2n+4} = 25$ MI $\therefore 2n+4=2$ MI 3 $n=-1$ AI \overline{p} $k = \sqrt{x}$ $k^2 - 8k + 13 = 0$ MI* $k = 4 \pm \sqrt{3}$ or $k = \frac{8 \pm \sqrt{(-8)^2 - 4 \times 1 \times 13}}{2}$ MI $k = 4 \pm \sqrt{3}$ AI $\therefore x = (4 + \sqrt{3})^2$ or $x = (4 - \sqrt{3})^2$ MI $x = 19 \pm 8\sqrt{3}$ or $19 \pm 4\sqrt{12}$ AI $\frac{7}{\overline{p}}$ (i) $\frac{dy}{dx} = 2x$ BI* When $x = 1, \frac{dy}{dx} = 2$ BI 2 (ii) $\frac{a^2 + 5 - 6}{a - 1} = 2.3$ MI $a^2 - 2.3a + 1.3 = 0$ MI	(i) $m=4$ BI 1 May be embedded (ii) $6p^2 = 24$ $p^2 = 4$ p^{-2} p = 2 (iii) $5^{3p+4} = 25$ a = -1 $k = \sqrt{x}$ $k^2 - 8k + 13 = 0$ $k = 4 \pm \sqrt{3}$ or $k = \frac{8 \pm \sqrt{(-8)^2 - 4 \times 1 \times 13}}{2}$ (ii) $k = 4 \pm \sqrt{3}$ or $k = \frac{8 \pm \sqrt{(-8)^2 - 4 \times 1 \times 13}}{2}$ $k = 4 \pm \sqrt{3}$ or $19 \pm 4\sqrt{12}$ (i) $\frac{dy}{dx} = 2x$ (ii) $\frac{dy}{dx} = 2x$ $\frac{d^2 - 2.3a + 1.3 = 0}{a(a-1.3)(a-1) = 0}$ BI 1 May be embedded MI $\frac{(\pm)6p^2 = 24}{or 36p^2 = 24}$ $MI (\pm)6p^2 = 24$ $MI (\pm)6p^2 = 24$

4721			January 2 73	
	Alternative method: Equation of straight line through (1,6) with m = 2.3 found then $a^2 + 5 = 2.3a + "c"$ seen M1 with $c = 3.7$ A1 then as main scheme			hun nyma January 2
(iii)		B1	1 7	2 < value < 2.3 (strict inequality signs)
7 (i)	(a) Fig 3 (b) Fig 1 (c) Fig 4	B1 B1 B1	3	
(ii)	$-(x-3)^2$	M1		Quadratic expression with correct x^2 term and correct <i>y</i> -intercept and/or roots for their unmatched diagram (e.g. negative quadratic with <i>y</i> -intercept of -9 or root of 3 for Fig 2)
	$y = -(x-3)^2$	A1	2 5	Completely correct equation for Fig 2
(i)	Centre (-3, 2) $(x + 3)^2 - 9 + (y - 2)^2 - 4 - 4 = 0$ $r^2 = 17$	B1 M1		Correct method to find r^2
	$r = \sqrt{17}$	A1	3	Correct radius
(ii)	$x^{2} + (3x+4)^{2} + 6x - 4(3x+4) - 4 = 0$	M1* A1		substitute for <i>x/y</i> or attempt to get an equation in 1 variable only correct unsimplified expression
	$10x^{2} + 18x - 4 = 0$ (5x-1)(x+2) = 0 $x = \frac{1}{5} \text{ or } x = -2$	A1 M1 dep A1		obtain correct 3 term quadratic correct method to solve their quadratic
	$y = \frac{23}{5}$ or $y = -2$	A1	6 9	SR If A0 A0, one correct pair of values, spotted or from correct factorisation www B1
) (i)	$f'(x) = -x^{-2} - \frac{1}{2}x^{-\frac{1}{2}}$	M1		Attempt to differentiate 1
		A1		$-x^{-2}$ or $-\frac{1}{2}kx^{-\frac{1}{2}}$ www
		A1	3	Fully correct expression

				www.
4721	Mark Schen	ne		January 2
(ii)	$\mathbf{f}^{\prime\prime\prime}(x) = 2x^{-3} + \frac{1}{4}x^{-\frac{3}{2}}$	M1		Attempt to differentiate their f (x)
		A1 ft		One correctly differentiated term
		A1		Fully correct expression www in either part of the question
	$f''(4) = \frac{2}{4^3} + \frac{1}{4} \cdot \frac{1}{8}$ $= \frac{1}{16}$	M1		Substitution of $x = 4$ into their $f''(x)$
	$=\frac{1}{16}$	A1	5 8	oe single fraction www in either part of the question
10	$(-30)^2 - 4 \times k \times 25k = 0$	M1		Attempts $b^2 - 4ac$ involving k
	$900 - 100k^2 = 0$	M1		States their discriminant = 0
	k = 3 or $k = -3$	B1 B1	4 4	
11 (i)	P = 2 + x + 3x + 2 + 5x + 5x = 14x + 4	M1		Adds lengths of all 4 edges with attempt to use Pythagoras
		A1	2	to find the missing length May be left unsimplified
(ii)	Area of rectangle = $3x(2+x) = 6x + 3x^2$	M1		Correct method – splitting or formula for area of trapezium
	Area of triangle = $\frac{1}{2}(3x)(4x) = 6x^2$			
	Total area = $9x^2 + 6x$	A1	2	Convincing working leading to given expression AG
(iii)		B1 ft		ft on their expression for <i>P</i> from (i) unless restarted in (iii). (Allow >)
	$\frac{5}{2}$	B1		o.e. (e.g. $\frac{35}{14}$) soi by
	$-9x^2 + 6x < 99$	B1		subsequent working
	$3x^{2} + 0x < 33$ $3x^{2} + 2x - 33 < 0$ (3x + 11)(x - 3) < 0			Allow ≤
	$\left(-\frac{11}{3}<\right)x<3$	M1		Correct method to find critical values
		B 1		x < 3 identified
	5	M1		root from linear $< x <$ upper root from quadratic
	$\therefore \frac{5}{2} \le x < 3$	A1	7 11	Fully correct including inequality signs or exact
				equivalent in words cwo

January 20 Mainscloud.com


4722 **4722 Core Mathematics 2**

1	(i)	$2(1 - \cos^2 x) = 5\cos x - 1$ $2\cos^2 x + 5\cos x - 3 = 0$ A.G.	M1 A1 2	Use $\sin^2 x = 1 - \cos^2 x$ Show given equation correctly
	(ii)	$(2\cos x - 1)(\cos x + 3) = 0$ $\cos x = \frac{1}{2}$ $x = 60^{\circ}$ $x = 300^{\circ}$	M1 M1 A1 A1√ 4 6	Recognise equation as quadratic in cos x and attempt recognisable method to solve Attempt to find x from root(s) of quadratic Obtain 60° or $\pi/_{3}$ or 1.05 rad Obtain 300° only (or 360° – their x) and no extra in range SR answer only is B1 B1
2	(i)	$\int (6x-4)\mathrm{d}x = 3x^2 - 4x + c$	M1*	Attempt integration (inc. in power for at least one term)
		$y = 3x^2 - 4x + c \Longrightarrow 5 = 12 - 8 + c$	A1 M1dep*	Obtain $3x^2 - 4x$ (or unsimplified equiv), with or without + c Use (2, 5) to find c
		$\Rightarrow c = 1$ Hence $y = 3x^2 - 4x + 1$	A1 4	$Obtain y = 3x^2 - 4x + 1$
	(ii)	$3p^{2} - 4p + 1 = 5$ $3p^{2} - 4p - 4 = 0$ (p - 2) (3p + 2) = 0 $p = \frac{-2}{3}$	M1* M1dep* A1 3 7	Equate their y (from integration attempt) to 5 Attempt to solve three term quadratic Obtain $p = \frac{-2}{3}$ (allow any variable) from correct working; condone $p = 2$ still present, but A0 if extra incorrect solution
3	(i)	$(2-x)^7 = 128 - 448x + 672x^2 - 560x^3$	M1 A1 A1 A1 4	Attempt (at least) two relevant terms – product of binomial coeff, 2 and x (or expansion attempt that considers all 7 brackets) Obtain $128 - 448x$ Obtain $672x^2$ Obtain $-560x^3$
	(ii)	$-560 \times (^{1}/_{4})^{3} = ^{-35}/_{4}$	M1 A1 2	Attempt to use coeff of x^3 from (i), with clear intention to cube ${}^{1}\!/_{4}$ Obtain ${}^{-35}\!/_{4}(w^6)$, (allow ${}^{35}\!/_{4}$ from $+560x^3$ in (i))

				Mun my my
472	2 Mark Sch	eme		January 20 Adding Sty.
4	(i) $\int_{3}^{5} \log_{10} (2+x) dx \approx \frac{1}{2} \times \frac{1}{2} \times (\log 5 + 2 \log 5.5 + 2 \log 6 + 2 \log 6.5 + \log 7)$ ≈ 1.55	M1 M1 M1 A1	4	Multiply with the second seco
	(ii) $\int_{3}^{5} \log_{10} (2+x)^{\frac{1}{2}} dx = \frac{1}{2} \int_{3}^{5} \log_{10} (2+x) dx$ $\approx \frac{1}{2} \times 1.55$ ≈ 0.78	B1√ B1	2	Divide by 2, or equiv, at any stage to obtain 0.78 or 0.77, following their answer to (i) Explicitly use $\log \sqrt{a} = \frac{1}{2} \log a$ on a single term
5	$\int_{1}^{3} \left\{ (11 - 9x^{-2}) - (x^{2} + 1) \right\} dx = \left[9x^{-1} - \frac{1}{3}x^{3} + 10x \right]_{1}^{3}$ $= (3 - 9 + 30) - (9 - \frac{1}{3} + 10)$ $= 24 - 18^{2}/_{3}$ $= 5^{1}/_{3}$ <i>OR</i> $\left[11x + 9x^{-1} \right]^{3} - \left[\frac{1}{3}x^{3} + x \right]^{3}$ $= \left[(33 + 3) - (11 + 9) \right] - \left[(9 + 3) - (\frac{1}{3} + 1) \right]$ $= 16 - 10^{2}/_{3}$ $= 5^{1}/_{3}$	M1 M1 A1 M1 A1 M1	7	Attempt subtraction (correct order) at any point Attempt integration – inc. in power for at least one term Obtain $\pm (-\frac{1}{3}x^3 + 10x)$ or $11x$ and $\frac{1}{3}x^3 + x$ Obtain remaining term of form kx^{-1} Obtain $\pm 9x^{-1}$ or any unsimplified equiv Use limits $x = 1$, 3 – correct order & subtraction Obtain $5^1/_3$, or exact equiv
6	(i) $f(-3) = 0 \Rightarrow -54 + 9a - 3b + 15 = 0$ 3a - b = 13 $f(2) = 35 \Rightarrow 16 + 4a + 2b + 15 = 35$ 2a + b = 2 Hence $a = 3, b = -4$	M1 A1 M1 A1 M1 A1	6	Attempt f(-3) and equate to 0, or equiv method Obtain $3a - b = 13$, or unsimplified equiv Attempt f(2) and equate to 35, or equiv method Obtain $2a + b = 2$, or unsimplified equiv Attempt to solve simultaneous eqns Obtain $a = 3$, $b = -4$
(ii)	$f(x) = (x + 3)(2x^{2} - 3x + 5)$ ie quotient is $(2x^{2} - 3x + 5)$	M1 A1 A1	3	Attempt complete division by $(x + 3)$, or equiv Obtain $2x^2 - 3x + c$ or $2x^2 + bx + 5$, from correct $f(x)$ Obtain $2x^2 - 3x + 5$ (state or imply as quotient)

472	2	Mark S	cheme	$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & &$
7	(i)	$13^{2} = 10^{2} + 14^{2} - 2 \times 10 \times 14 \times \cos \theta$	M1	Attempt to use correct cosine rule in ΔABC
		$\cos \theta = 0.4536$ $\theta = 1.10$ A.G.	A1 2	Obtain 1.10 radians (allow 1.1 radians) SR B1 only for verification of 1.10, unless complete method
	(ii)	arc $EF = 4 \times 1.10 = 4.4$	B1	State or imply $EF = 4.4$ cm (allow 4×1.10)
		perimeter = $4.4 + 10 + 13 + 6$	M1	Attempt perimeter of region - sum of arc and three sides with attempt to subtract 4 from at least one relevant side
		= 33.4 cm	A1 3	Obtain 33.4 cm
	(iii)	area $AEF = \frac{1}{2} \times 4^2 \times 1.1$	M1	Attempt use of $(\frac{1}{2}) r^2 \theta$, with $r = 4$ and $\theta = 1.10$
		= 8.8 area $ABC = \frac{1}{2} \times 10 \times 14 \times \sin 1.1$	A1 M1	Obtain 8.8 Attempt use of $(\frac{1}{2})ab\sin\theta$, sides consistent
		= 62.4	A1	with angle used Obtain 62.4 or better (allow 62.38 or 62.39)
		hence total area = 53.6 cm^2	A1 5	Obtain total area as 53.6 cm^2
			2.44	
8	(i)	$u_5 = 8 + 4 \times 3$	M1	Attempt $a + (n - 1)d$ or equiv inc list of terms
		= 20 A.G.	A1 2	Obtain 20
	(ii)	$u_n = 3n + 5$ ie $p = 3, q = 5$	B1	Obtain correct expression, poss unsimplified, eg $8 + 3(n - 1)$
			B1 2	Obtain correct $3n + 5$, or $p = 3$, $q = 5$ stated
	(iii)	arithmetic progression	B1 1	Any mention of arithmetic
	(iv)	$\frac{2N}{2}(16+(2N-1)3) - \frac{N}{2}(16+(N-1)3) = 1256$	M1	Attempt S_N , using any correct formula (inc $\sum (3n + 5)$)
		$26N + 12N^2 - 13N - 3N^2 = 2512$	M1	Attempt S_{2N} , using any correct formula,
		$26N + 12N - 13N - 3N = 2512$ $9N^2 + 13N - 2512 = 0$	M1*	with 2N consistent (inc $\sum (3n + 5)$) Attempt subtraction (correct order) and equate to 1256
		(9N+157)(N-16) = 0 N = 16	M1dep* A1 5	<u> </u>
			OR: M1	alternative method is to use $n/2$ $(a + l) = 1256$ Attempt given difference as single summation with N terms
			M1 M1	Attempt $a = u_{N+1}$ Attempt $l = u_{2N}$
			M1 M1	Equate to 1256 and attempt to solve quadratic
			A1	Obtain $N = 16$ only, from correct working
			10	

January 26

Mun. My My Marins January 2. Pains cloud. com

4723 Core Mathematics 3

1		Obtain integral of form $k(2x-7)^{-1}$ Obtain correct $-5(2x-7)^{-1}$ Include + <i>c</i>	M1 any constant k A1 or equiv B1 3 at least once; following any integral 3
2	(i)	Use $\sin 2\theta = 2\sin\theta\cos\theta$ Attempt value of $\sin\theta$ from $k\sin\theta\cos\theta = 5\cos\theta$ Obtain $\frac{5}{12}$	 B1 M1 any constant k; or equiv A1 3 or exact equiv; ignore subsequent work
	(ii)	Use $\csc \theta = \frac{1}{\sin \theta}$ or $\csc^2 \theta = 1 + \cot^2 \theta$ Attempt to produce equation involving $\cos \theta$ only Obtain $3\cos^2 \theta + 8\cos \theta - 3 = 0$ Attempt solution of 3-term quadratic equation Obtain $\frac{1}{3}$ as only final value of $\cos \theta$	B1 or equiv M1 using $\sin^2 \theta = \pm 1 \pm \cos^2 \theta$ or equiv A1 or equiv M1 using formula or factorisation or equiv A1 5 or exact equiv; ignore subsequent work
3	(i)	Obtain or clearly imply $60 \ln x$ Obtain ($60 \ln 20 - 60 \ln 10$ and hence) $60 \ln 2$	B1 B1 2 with no error seen
	(ii)	Attempt calculation of form $k(y_0 + 4y_1 + y_2)$ Identify k as $\frac{5}{3}$ Obtain $\frac{5}{3}(6+4\times4+3)$ and hence $\frac{125}{3}$ or 41.7	M1 any constant k; using <i>y</i> -value attempts A1 A1 3 or equiv
	 (iii)	Equate answers to parts (i) and (ii) Obtain $60 \ln 2 = \frac{125}{3}$ and hence $\frac{25}{36}$	 M1 provided ln 2 involved A1 2 AG; necessary detail required including clear use of an exact value from (ii)
4	(i)	Attempt correct process for composition Obtain (7 and hence) 0	M1 numerical or algebraic A1 2
	(ii)	Attempt to find <i>x</i> -intercept Obtain $x \le 7$	M1 A1 2 or equiv; condone use of <
	 (iii)	Attempt correct process for finding inverse Obtain $\pm (2-y)^3 - 1$ or $\pm (2-x)^3 - 1$ Obtain correct $(2-x)^3 - 1$	M1 A1 A1 3 or equiv in terms of x
	(iv)	Refer to reflection in $y = x$	B1 1 or clear equiv 8

MMM. My Marks January 2. Sinscloud. com

5	(i)	Obtain derivative of form $kx(x^2+1)^7$ Obtain $16x(x^2+1)^7$ Equate first derivative to 0 and confirm $x = 0$ or	M1 A1	any constant <i>k</i> or equiv
		substitute $x = 0$ and verify first derivative zero Refer, in some way, to $x^2 + 1 = 0$ having no root	M1 A1 4	AG; allow for deriv of form $kx(x^2 + 1)^7$ or equiv
	(ii)	Attempt use of product rule Obtain $16(x^2+1)^7 +$ Obtain $ + 224x^2(x^2+1)^6$	A1 $$	obtaining + form follow their $kx(x^2 + 1)^7$ follow their $kx(x^2 + 1)^7$; or
		Substitute 0 in attempt at second derivative Obtain 16	M1 A1 5	unsimplified equiv dep *M from second derivative which is correct at some point
6		Integrate e^{3x} to obtain $\frac{1}{3}e^{3x}$ or $e^{-\frac{1}{2}x}$ to obtain $-2e^{-\frac{1}{2}x}$	B1	or both
		Obtain indefinite integral of form $m_1 e^{3x} + m_2 e^{-\frac{1}{2}x}$	M1	any constants m_1 and m_2
		Obtain correct $\frac{1}{3}ke^{3x} - 2(k-2)e^{-\frac{1}{2}x}$	A1	or equiv
		Obtain $e^{3\ln 4} = 64$ or $e^{-\frac{1}{2}\ln 4} = \frac{1}{2}$	B1	or both
		Apply limits and equate to 185	M1	including substitution of lower limit
		Obtain $\frac{64}{3}k - (k-2) - \frac{1}{3}k + 2(k-2) = 185$	A1	or equiv
		Obtain $\frac{17}{2}$	A1 7	or equiv
7	(a)	<u>Either</u> : State or imply either $\frac{d4}{dr} = 2\pi r$ or $\frac{d4}{dt} = 250$ Attempt manipulation of derivatives	B1	or both

	Attempt manipulation of derivatives		
	to find $\frac{\mathrm{d}r}{\mathrm{d}t}$	M1	using multiplication / division
	Obtain correct $\frac{250}{2\pi r}$	A1	or equiv
	Obtain 1.6	A1 4	or equiv; allow greater accuracy
<u>Or</u> :	Attempt to express r in terms of t	M1	using $A = 250t$
	Obtain $r = \sqrt{\frac{250t}{\pi}}$	A1	or equiv
	Differentiate $kt^{\frac{1}{2}}$ to produce $\frac{1}{2}kt^{-\frac{1}{2}}$	M1	any constant k
	Substitute $t = 7.6$ to obtain 1.6	A1 (4	4) allow greater accuracy

4723	Mark Scheme	B1 M1 using valid process; condone sign
(b)	State $\frac{dm}{dt} = -150ke^{-kt}$	B1
	dt Equate to (±)3 and attempt value for t	M1 using valid process; condone sign confusion
	Obtain $-\frac{1}{k}\ln(\frac{1}{50k})$ or $\frac{1}{k}\ln(50k)$ or $\frac{\ln 50 + \ln k}{k}$	A1 3 or equiv but with correct treatment of
	κ συκ κ κ	signs 7
8 (i)	State scale factor is $\sqrt{2}$ B1 allow 1.4 State translation is in negative <i>x</i> -direction by $\frac{3}{2}$ units	B1 or clear equiv B1 3
 (ii)	Draw (more or less) correct sketch of $y = \sqrt{2x+3}$	B1 'starting' at point on negative <i>x</i> -axis
	Draw (more or less) correct sketch of $y = \frac{N}{x^3}$	B1 showing both branches
	<i>x</i> Indicate one point of intersection [SC: if neither sketch complete or correct but diagram	B1 3 with both sketches correct n correct for both in first quadrant B1]
 (iii)	(a) Substitute 1.9037 into $x = N^{\frac{1}{3}}(2x+3)^{-\frac{1}{6}}$	M1 or into equation $\sqrt{2x+3} = \frac{N}{r^3}$; or equiv
	Obtain 18 or value rounding to 18	A1 2 with no error seen x
	(b) State or imply $2.6282 = N^{\frac{1}{3}} (2 \times 2.6022 + 3)^{-\frac{1}{6}}$ Attempt solution for N Obtain 52	B1 M1 using correct process A1 3 concluding with integer value 11
9 (i)	Identify tan 55° as tan(45°+10°) B1 or equiv	
	Use correct angle sum formula for $tan(A+B)$	M1 or equiv
	Obtain $\frac{1+p}{1-p}$	A1 3 with $\tan 45^\circ$ replaced by 1
 (ii)	Either: Attempt use of identity for $\tan 2A$	*M1 linking 10° and 5°
	Obtain $p = \frac{2t}{1-t^2}$	A1
	Attempt solution for t of quadratic equation	M1 dep *M
	Obtain $\frac{-1+\sqrt{1+p^2}}{p}$	A1 4 or equiv; and no second expression
	<u>Or (1)</u> : Attempt expansion of $tan(60^{\circ}-55^{\circ})$	*M1
	Obtain $\frac{\sqrt{3} - \frac{1+p}{1-p}}{1+\sqrt{3} \frac{1+p}{1-p}}$	A1 $$ follow their answer from (i)
	Attempt simplification to remove denominators	M1 dep *M
	Obtain $\frac{\sqrt{3}(1-p) - (1+p)}{1-p + \sqrt{3}(1+p)}$	A1 (4) or equiv

4723 Mark Scheme	B1 M1 with exact attempt for tan15°
<u>Or (2)</u> : State or imply $\tan 15^\circ = 2 - \sqrt{3}$ Attempt expansion of $\tan(15^\circ - 10^\circ)$ Obtain $\frac{2 - \sqrt{3} - p}{1 + p(2 - \sqrt{3})}$	B1 M1 with exact attempt for tan15° A2 (4)
<u>Or (3)</u> : State or imply $\tan 15^\circ = \frac{\sqrt{3}-1}{\sqrt{3}+1}$ Attempt expansion of $\tan(15^\circ - 10^\circ)$ Obtain $\frac{\sqrt{3}-1-p\sqrt{3}-p}{\sqrt{3}+1+p\sqrt{3}-p}$	 B1 or exact equiv M1 with exact attempt for tan15° A2 (4) or equiv
<u>Or (4)</u> : Attempt expansion of $\tan(10^\circ - 5^\circ)$ Obtain $t = \frac{p-t}{1+pt}$ Attempt solution for t of quadratic equation Obtain $\frac{-2 + \sqrt{4 + 4p^2}}{2p}$	*M1 A1 M1 dep *M A1 (4) or equiv; and no second expression
(iii) Attempt expansion of both sides Obtain $3\sin\theta\cos 10^\circ + 3\cos\theta\sin 10^\circ = 7\cos\theta\cos 10^\circ + 7\sin\theta\sin 10^\circ$ Attempt division throughout by $\cos\theta\cos 10^\circ$ Obtain $3t + 3p = 7 + 7pt$ Obtain $\frac{3p-7}{7p-3}$	M1 A1 or equiv M1 or by $\cos\theta$ (or $\cos 10^\circ$) only A1 or equiv A1 5 or equiv 12

4724 Core Mathematics 4

1		Long division method Correct leading term x^2 in quotient Evidence of correct div process (Quotient =) $x^2 + 6x - 4$ (Remainder =) $11x + 9$ Identity method $x^4 + 11x^3 + 28x^2 + 3x + 1 = Q(x^2 + 5x + 2) + R$ $Q = ax^2 + bx + c$ or $x^2 + bx + c$; $R = dx + e$ & ≥ 3 ops a = 1, b = 6, c = -4, d = 11, e = 9 (for all 5)	B1 M1 A1 A1 M1 M1 A2		Sufficient to convince N.B. $a = 1 \Rightarrow 1$ of the 3 ops S.R. <u>B</u> 1 for 3 of these
			4		
2	(i)	Find at least 2 of $(\overrightarrow{AB} \text{ or } \overrightarrow{BA})$, $(\overrightarrow{BC} \text{ or } \overrightarrow{CB})$, $(\overrightarrow{AC} \text{ or } \overrightarrow{CA})$) M1		irrespect of label; any notation
		Use correct method to find scal prod of any 2 vector $$	s M1		or use corr meth for modulus
		Use $\overrightarrow{AB.BC} = 0$ or $\frac{\overrightarrow{ABBC}}{ AB BC } = 0$	M1		or use $\left \overrightarrow{AB}\right ^2 + \left \overrightarrow{BC}\right ^2 = \left \overrightarrow{AC}\right ^2$
		Obtain $p = 1$ (dep 3 @ M1)	A1	4	
	(ii)	Use equal ratios of appropriate vectors	M1		or scalar product method
		Obtain $p = -8$	A1 6	2	
3		Use $\cos 2x = a \cos^2 x + b/\pm \cos^2 x - \sin^2 x/1 - 2\sin^2 x$	*M1		
		Obtain $\lambda + \mu \sec^2 x$ dep	*M1		using 'reasonable' Pythag attempt
		$\int \lambda + \mu \sec^2 x \mathrm{d}x = \lambda x + \mu \tan x$	A1		(λ or μ may be 0 here/prev line)
		Obtain correct result $2x - \tan x$	A1		no follow-through
		$\frac{1}{6}\pi - \sqrt{3} + 1$ ISW	A1		exact answer required
		0	5		
4		Attempt to connect du and dt or find $\frac{du}{dt}$ or $\frac{dt}{du}$	M1		not $du = dt$ but no accuracy
		$du = \frac{1}{t} dt$ or $\frac{du}{dt} = \frac{1}{t}$ or $dt = e^{u-2} du$ or $\frac{dt}{du} = e^{u-2}$	A1		
		Indef int $\rightarrow \int \frac{1}{u^2} (du)$	A1		no <i>t</i> or d <i>t</i> in evidence
		$=-\frac{1}{u}$	A1		
		Attempt to change limits if working with $f(u)$	M1		or re-subst & use 1 and e
		$\frac{1}{2}$ ISW	A1		In e must be changed to 1, ln 1 to 0
		$\overline{6}$ ISW	6		in e must be enanged to 1, in 1 to 0

47	24 Mark Scheme	•	¹ January 2. ¹ ² x ² accentable
5	(i) $(1+x)^{\frac{1}{3}} = 1 + \frac{1}{3}x + \dots$	B1	SIDUCICO.
	$\dots -\frac{1}{9}x^2$	B1 2	$-\frac{2}{18}x^2$ acceptable
-	(ii) (a) $(8+16x)^{\frac{1}{3}} = 8^{\frac{1}{3}} (1+2x)^{\frac{1}{3}}$	B1	not $16^{\frac{1}{3}}(\frac{1}{2}+x)^{\frac{1}{3}}$
	$(1+2x)^{\frac{1}{3}}$ = their (i) expansion with 2x replacing x		not dep on prev B1
	$= 1 + \frac{2}{3}x - \frac{4}{9}x^2 + \dots$	√A1	$-\frac{8}{18}x^2$ acceptable
		√B1 4	accept equiv fractions
	<u>N.B.</u> If not based on part (i), award M1 for $8^{\frac{1}{3}} + \frac{1}{3} \cdot 8^{-\frac{2}{3}}$	$6x) + \frac{\frac{1}{3} \cdot -\frac{2}{3}}{1.2}8$	$8^{-\frac{5}{3}}(16x)^2$, allowing $16x^2$ for
	$(16x)^2$, with 3 @ A1 for 2+ $\frac{4}{3}x\frac{8}{9}x^2$, accepting equiv	valent fracti	ions & ISW
	(ii) (b) $-\frac{1}{2} < x < \frac{1}{2}$ or $ x < \frac{1}{2}$	B1 1	no equality
6	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}}$	M1	quoted/implied
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 9 - \frac{9}{9t} \qquad \text{ISW}$	B1	
	$\frac{\mathrm{d}y}{\mathrm{d}t} = 3t^2 - \frac{3t^2}{t^3} \text{ISW}$	B1	
	Stating/implying $\frac{3t^2 - \frac{3}{t}}{9 - \frac{1}{t}} = 3 \implies t^2 = 9 \text{ or } t^3 - 9t = 0$	A1 V	WWW, totally correct at this stage
	t = 3 as final ans with clear log indication of invalidity of -3 ; ignore (non) mention of $t = 0$	A2	S.R. A1 if $t = \pm 3$ or $t = -3$
		6	or ($t = 3$ & wrong/no indication)
7	Treat $\frac{d}{dx}(x^2 y)$ as a product	M1	
	$\frac{\mathrm{d}}{\mathrm{d}x}\left(y^{3}\right) = 3y^{2} \frac{\mathrm{d}y}{\mathrm{d}x}$	B1	
	$3x^{2} + 2x^{2} \frac{dy}{dx} + 4xy = 3y^{2} \frac{dy}{dx}$	A1	Ignore $\frac{dy}{dx}$ = if not used
	Subst (2, 1) and solve for $\frac{dy}{dx}$ or vice-versa	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -4 \qquad \text{WWW}$	A1	
	grad normal = $-\frac{1}{\text{their } \frac{dy}{dx}}$	√A1	stated or used
	Find eqn of line, through (2, 1), with either gradient	M1	using their $\frac{dy}{dx}$ or $-\frac{1}{\text{their }\frac{dy}{dx}}$
	x - 4y + 2 = 0	A1 8	AEF with integral coefficients

January 🔼

WWW.MYMainscloud.com 8 (i) $-\sin x e^{\cos x}$ B1 1 (ii) $\int \sin x \, \mathrm{e}^{\cos x} \mathrm{d}x = -\mathrm{e}^{\cos x}$ anywhere in part (ii) B1 result $f(x) + \int g(x) dx$ Parts with split $u = \cos x$, $dv = \sin x e^{\cos x}$ M1 Indef Integ, 1st stage $-\cos x e^{\cos x} - \int \sin x e^{\cos x} dx$ accept $\dots -\int -e^{\cos x} - \sin x \, dx$ A1 Second stage = $-\cos x e^{\cos x} + e^{\cos x}$ *A1 dep*A2 6 Final answer = 17 **9** (i) P is $\begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \\ 3 \end{pmatrix}$ **B**1 direction vector of ℓ is $\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ and of \overrightarrow{OP} is their P **√**B1 Use $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$ for $\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ and their OP M1 $\theta = 35.3$ or better (0.615... rad) A1 4 (ii) Use $\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 3+t \\ 1-t \\ 1+2t \end{pmatrix} = 0$ M1 1(3+t) - 1(1-t) + 2(1+2t) = 0A1 $t = -\frac{2}{2}$ A1 Subst. into $\begin{pmatrix} 3+t\\ 1-t\\ 1+2t \end{pmatrix}$ to produce $\begin{pmatrix} 7/3\\ 5/3\\ -\frac{1}{3} \end{pmatrix}$ ISW A1 4 (iii) Use $\sqrt{x^2 + y^2 + z^2}$ where $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ is part (ii) answer M1 Obtain $\sqrt{\frac{75}{9}}$ AEF, 2.89 or better (2.8867513....) A1 2 10

January 2 Anains cloud. com

10 (i)
$$\frac{\frac{1}{3}}{3-x} \dots -\frac{\frac{1}{3}}{6-x}$$
 B1+1 **2**
(ii) (a) Separate variables $\int \frac{1}{(3-x)(6-x)} dx = \int k dt$ M1 or invert both sides

<u>Style</u>: For the M1, dx & dt must appear on correct sides <u>or</u> there must be \int sign on both sides

Change
$$\frac{1}{(3-x)(6-x)}$$
 into partial fractions from (i) $\sqrt{B1}$

$$\int \frac{A}{3-x} dx = \left(-A \text{ or } -\frac{1}{A}\right) \ln(3-x)$$
B1 or $\int \frac{B}{6-x} dx = \left(-B \text{ or } -\frac{1}{B}\right) \ln(6-x)$
 $-\frac{1}{3} \ln(3-x) + \frac{1}{3} \ln(6-x) = kt (+c)$
 $\sqrt{A1}$ f.t. from wrong multiples in (i)
Subst $(x = 0, t = 0)$ & $(x = 1, t = 1)$ into eqn with 'c' M1 and solve for 'k'
Use $\ln a + \ln b = \ln ab$ or $\ln a - \ln b = \ln \frac{a}{b}$ M1
Obtain $k = \frac{1}{3} \ln \frac{5}{4}$ with sufficient working & WWW A1 7 AG
(b) Substitute $k = \frac{1}{3} \ln \frac{5}{4}$, $t = 2$ & their value of 'c' *M1
Reduce to an eqn of form $\frac{6-x}{3-x} = \lambda$ dep*M1 where λ is a const
Obtain $x = \frac{27}{17}$ or 1.6 or better (1.5882353...) A2 4 S.R. A1 $\sqrt{}$ for $x = \frac{3\lambda - 6}{\lambda - 1}$

January 20 Mathscloud.com

4725 Further Pure Mathematics 1

l (i)	$\begin{pmatrix} a-4 & 2 \\ 3 & 0 \end{pmatrix}$	B1		Two elements correct
		B1	2	Remaining elements correct
(ii)	4 <i>a</i> – 6	B1		Correct determinant
	3	M1		Equate det A to 0 and solve
	$a = \frac{3}{2}$	A1	3	Obtain correct answer a. e. f.
		5		
(i)	$u^3 - 3u^2 + 3u - 1$	B1		Correct unsimplified expansion of $(u-1)^3$
		M1		Substitute for x
	$2u^3 - 6u^2 + 9u - 8 = 0$	A1	3	Obtain correct equation
(ii)		M1		Use $(\pm)\frac{d}{a}$ of new equation
	4	Alft	2	Obtain correct answer from their equation
		5		
	x - iy	B1		Conjugate known
	$x + 2y = 12 \qquad 2x + y = 9$	M1 A1		Equate real and imaginary parts Obtain both equations, OK with factor of i
		M1		Solve pair of equations
	z = 2 + 5i	A1	5	Obtain correct answer as a complex number
				S.C. Solving $z + 2iz = 12 + 9i$ can get
		5		max 4/5, not first B1
ļ		M1 M1		Express as sum of three series Use standard results
	$\frac{1}{4}n^2(n+1)^2 - \frac{1}{6}n(n+1)(2n+1) - n(n+1)$	A1		Obtain correct unsimplified answer
	4 0	M1 A1		Attempt to factorise Obtain at least factor of $n(n+1)$
	$\frac{1}{12}n(n+1)(n+2)(3n-7)$	A1	6	Obtain fully factorised correct answer

					mm m
4725		Mark Scheme			January 26 January 26
5 (i)			B1 B1	2	Mon. The The Second Sec
(ii)	Either	I	M1		Show image of unit square after reflection in $y = -x$
	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	Ē	A 1		Deduce reflection in <i>x</i> -axis
	Or	l	B1ft B1ft M1	4	Each column correct ft for matrix of their transformation Post multiply by correct reflection
			A1 B1B1		matrix Obtain correct answer State reflection, in <i>x</i> -axis If pre-multiplication, M0 but B1 B1 Available for correct description of
			6		their matrix
6 (i)]	B1		State or use 5 + i as a root
		I	M1		Use $\sum \alpha \beta = 6$
	<i>x</i> = -2	2	A1	3	Obtain correct answer
(ii)	Either	l	M1		Use $p = -\sum \alpha$
	<i>p</i> = -8		A1ft M1		Obtain correct answer, from their root Use $q = -\alpha\beta\gamma$
	<i>q</i> = 52	P	A1ft	4	Obtain correct answer, from their root
	Or	l	M1 M1 A1A1	l	Attempt to find quadratic factor Attempt to expand quadratic and linear Obtain correct answers
	Or		M1 M1 A1 A1ft 7		Substitute $(5 - i)$ into equation Equate real and imaginary parts Obtain correct answer for p Obtain correct answer for q , ft their p
7 (i)		J	B1	1	Obtain given answer correctly
(ii)		1	M1 A1 M1		Express at least 1 st two and last term using (i) All terms correct
	$1 - \frac{1}{\left(n+1\right)^2}$		MI A1	4	Show that correct terms cancel Obtain correct answer, in terms of <i>n</i>
 (iii)	$\frac{1}{4}$]	B1		Sum to infinity seen or implied
			B1	2	Obtain correct answer S.C ³ / ₄ scores B1
		,	7		

		www.m. M.
725	Mark Scheme	Attempt to equate real and imaginary parts of $(x + iy)^2$ & 5 – 12i
3 (i)	M1	Attempt to equate real and imaginary parts of $(x + iy)^2 \& 5 - 12i$
$x^2 - y^2 = 5$ and $xy = -6$	A1	Obtain both results, a.e.f
	M1	Obtain quadratic in x^2 or y^2
	M1	Solve to obtain $x = (\pm)3$ or $y = (\pm)2$
± (3 – 2i)	A1 5	Obtain correct answers as complex nos
(ii)		B1ft Circle with centre at their
quare root	D1	Circle access a through opigin
	B1 B1ft	Circle passing through origin 2 nd circle centre correct relative to 1 st
	B1 4	Circle passing through origin
	9	
(i)	M1	Show correct expansion process for
	M1	3×3 or multiply adjoint by A
	M1	Correct evaluation of any 2×2 at any stage
$\det \mathbf{A} = \Delta = 6a - 6$	A1	stage Obtain correct answer
$\mathbf{A}^{-1} = \frac{1}{\Delta} \begin{pmatrix} 3a - 1 & a + 1 & -4 \\ 1 & 2a - 1 & -2 \\ -3 & -3 & 6 \end{pmatrix}$	M1 A1	Show correct process for adjoint entries Obtain at least 4 correct entries in adjoint
	B1	Divide by their determinant
	A1 7	Obtain completely correct answer
(ii) $\frac{1}{\Delta} \begin{pmatrix} 5a-7\\4a-5\\3 \end{pmatrix}$	M1	Attempt product of form A ⁻¹ C or eliminate to get 2 equations and solve
	A1A1A1 ft all 3	1 Obtain correct answer
	4	S.C. if det now omitted, allow max A2 f
	11	
0 (i)		
	B1	Correct \mathbf{M}^2 seen
$\mathbf{M}^2 = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} \mathbf{M}^3 = \begin{pmatrix} 1 & 6 \\ 0 & 1 \end{pmatrix}$	M1	Convincing attempt at matrix
	A1 3	multiplication for M ³ Obtain correct answer
(ii) $\mathbf{M}^n = \begin{pmatrix} 1 & 2n \\ 0 & 1 \end{pmatrix}$	B1ft 1	State correct form, consistent with (i)

4725	Mark Scheme	$\begin{array}{c} & & & & & \\$
10 (iii)	M1 A1 B1 4	Correct attempt to multiply $\mathbf{M} \& \mathbf{M}^{k}$ or v.v. Obtain element 2($k + 1$) Clear statement of induction step, from correct working Clear statement of induction conclusion, following their working
(iv)	B1 DB1 DB1 3 11	Shear x-axis invariant e.g. $(1, 1) \rightarrow (21, 1)$ or equivalent using scale factor or angles

4726 Further Pure Mathematics 2

472	26	Mark So	cheme	January 2
47	726	Further Pure Mather	nati	cs 2
1	(i)	Get 0.876096, 0.876496, 0.876642	B1√	Munny January 2 CS 2 For any one correct or √ from wrong answer; radians only
			B1	All correct
	(ii)	Subtract correctly (0.00023(0), 0.000084)	B1√	On their answers
		Divide their errors as e_4/e_3 only Get 0.365(21)	M1 A1	May be implied Cao
2	(i)	Find $f'(x) = 1/(1+(1+x)^2)$	M1	Quoted or derived; may be simplified or left as $\sec^2 y dy/dx = 1$
		Get $f(0) = \frac{1}{4\pi}$ and $f'(0) = \frac{1}{2}$	A1√	On their $f'(0)$; allow $f(0)=0.785$ but not 4
		Attempt $f''(x)$	M1	Reasonable attempt at chain/quotient rule
		Correctly get $f''(0) = -\frac{1}{2}$	A1	or implicit differentiation A.G.
	(ii)	Attempt Maclaurin as $af(0)+bf'(0)+cf''(0)$	M1	Using their f(0) and f'(0)
		Get $\frac{1}{4}\pi + \frac{1}{2}x - \frac{1}{4}x^2$	A1	Cao; allow 0.785
3	(i)	Attempt gradient as $\pm f(x_1)/(x_2 - x_1)$	M1	Allow reasonable <i>y</i> -step/ <i>x</i> -step
		Equate to gradient of curve at x_1	M1	Allow ±
		Clearly arrive at A.G.	A1	Beware confusing use of \pm
		SC Attempt equation of tangent	M1	As $y - f(x_1) = f'(x_1)(x - x_1)$
		Put $(x_2, 0)$ into their equation	M1	
		Clearly arrive at A.G.	A1	
••••	(ii)	Diagram showing at least one more	B1	
		tangent	-	
		Description of tangent meeting <i>x</i> -axis, used as next starting value	B1	
	(iii)	Reasonable attempt at N-R	M1	Clear attempt at differentiation
		Get 1.60	A1	Or answer which rounds
4	(i)	State $r = 1$ and $\theta = 0$.	B1	May be seen or implied
		\frown		
		e=0	B1	Correct shape, decreasing r (not through
		0 1		0)
	(ii)	Use $\frac{1}{2}\int r^2 d\theta$ with $r = e^{-2\theta}$ seen or implied	M1	Allow $\frac{1}{2}\int e^{4\theta} d\theta$
		Integrate correctly as $-1/8e^{-4\theta}$	A1	T . 4
		Use limits in correct order Use $r_1^2 = e^{-4\theta}$ etc.	M1 M1	In their answer May be implied
		$\bigcup_{i \in I_1} - \bigcup_{i \in I_i} \bigcup_$	1111	wiay be implied

726	Mark S	cheme	Mun Mun January 2
(i)	Use correct definitions of cosh and sinh	B1	
(-)	Attempt to square and subtract	M1	On their definitions
	Clearly get A.G.	A1	
	Show division by cosh ²	B1	Or clear use of first result
(ii)	Rewrite as quadratic in sech and		Or quadratic in cosh
	attempt to solve	M1	
	Eliminate values outside $0 < \text{sech} \le 1$	B1	Or eliminate values outside $\cosh \ge 1$ (allow positive)
	$\operatorname{Get} x = \ln(2 + \sqrt{3})$	A1	
	Get $x = -\ln(2+\sqrt{3})$ or $\ln(2-\sqrt{3})$	A1	
(i)	Attempt at correct form of P.F.	M1	Allow $Cx/(x^2+1)$ here; not $C = 0$
	Rewrite as 4=		
	$A(1+x)(1+x^{2}) + B(1-x)(1+x^{2}) +$	M1 $$	From their P.F.
	(Cx + D)(1 - x)(1 + x)		
	Use values of x /equate coefficients	M1	
	$\operatorname{Get} A = 1, B = 1$	A1	cwo
	$\operatorname{Get} C = 0, D = 2$	A1	
			SC Use of cover-up rule for <i>A</i> , <i>B</i> M1 If both correct A1 cwo
			If both confect A1 cwo
(ii)	$\operatorname{Get} A\ln(1+x) - B\ln(1-x)$	M1	Or quote from List of Formulae
	Get $D \tan^{-1} x$	B1	1
	Use limits in their integrated expressions	M1	
	Clearly get A.G.	A1	
' (i)	LHS = sum of areas of rectangles, area =		
	1x <i>y</i> -value from $x = 1$ to $x = n$	B1	
	RHS = Area under curve from $x = 0$ to n	B1	
(ii)	Diagram showing areas required	B1	
	Use sum of areas of rectangles	B1	
	Explain/show area inequality with		
	limits in integral clearly specified	B1	
(iii)	Attempt integral as $kx^{4/3}$	M1	
	Limits gives 348(.1) and 352(.0)	A1	Allow one correct
	Get 350	A1	From two correct values only

		cheme	January 2	math
6 (i)	$\operatorname{Get} x = 1, y = 0$	B1,B1	h_{WW} January 2 $(x^2y - x(2y+k) + y = 0)$ Allow > = here	
(ii)	Rewrite as quadratic in x	M1	$(x^2y - x(2y + k) + y = 0)$	
	Use $b^2 - 4ac \ge 0$ for all real x	M1	i mow i , mere	
	Get correct inequality State use of $k>0$ to A.G.	A1 A1	$4ky + k^2 \ge 0$	
	State use of k=0 to A.G.	AI	SC Use differentiation (parts (ii) and (iii))
			Attempt prod/quotient rule	M1
			Solve = 0 for $x = -1$	A1
			Use $x = -1$ only (reject $x=1$), $y = -$	
			Fully justify minimum	B1 M1
			Attempt to justify for all x Clearly get A.G.	A1
(***		2.74		
(iii)	Replace $y = -\frac{1}{4}k$ in quadratic in x Get $x = -1$ only	M1 A1		
	11:1	B1	Through origin with minimum at $(-1,$	$-\frac{1}{k}$
		DI	seen or given in the answer	/40)
		B1	Correct shape (asymptotes and approa	ches)
	x		SC (Start again)	
	$(-1, -\frac{1}{4k})$ $x = 1$		Differentiate and solve $dy/dx = 0$ for a	it least
			one x-value, independent of k	M1
			Get $x = -1$ only	A1
(i)	Rewrite $\tanh y$ as $(e^{y} - e^{-y})/(e^{y} + e^{-y})$	B1	Or equivalent	
	Attempt to write as quadratic in e^{2y} Clearly get A.G.	M1 A1		
	Cleany get A.G.	AI		
(ii)	(a) Attempt to diff. and solve = 0	M1		
	Get $\tanh x = b/a$ Use $(-1) < \tanh x < 1$ to show $b < a$	A1 B1		
	OSC(1) > talm x > 1 to show 0 < a	ות	SC Use exponentials	M1
			Get $e^{2x} = (a+b)/(a-b)$	A1
			Use $e^{2x} > 0$ to show $b < a$	B1
			SC Write $x = \tanh^{-1}(b/a)$	M1
			$= \frac{1}{2}\ln((1+b/a)/(1-b/a))$	A1
			Use () > 0 to show $b < a$	B1
	(b) Get $\tanh x = 1/a$ from part (ii)(a)	B1		
	Replace as ln from their answer Get $r = \frac{1}{2} \ln ((a + 1)/(a - 1))$	M1 A1		
	Get $x = \frac{1}{2} \ln ((a+1)/(a-1))$ Use $e^{\frac{1}{2}\ln((a+1)/(a-1))} = \sqrt{((a+1)/(a-1))}$	AI M1	At least once	
	Clearly get A.G.	A1		
	Test for minimum correctly	B1		
			SC Use of $u = coshu(a + tenhu)$ and	
			SC Use of $y = \cosh(a - \tanh x)$ and	

4727 Mark Scheme **4727 Further Pure Mathematics 3**

WWW.INYMathscloud.com 1 METHOD 1 line segment between l_1 and $l_2 = \pm [4, -3, -9]$ B1 For correct vector M1* For finding vector product of direction $\mathbf{n} = [1, -1, 2] \times [2, 3, 4] = (\pm)[-2, 0, 1]$ A1 vectors distance = $\frac{|[4, -3, -9] \cdot [-2, 0, 1]|}{(\sqrt{2^2 + 0^2 + 1^2})} = \frac{17}{(\sqrt{5})}$ M1 For using numerator of distance formula (*dep) A1 5 For correct scalar product $\neq 0$, so skew and correct conclusion METHOD 2 lines would intersect where $\int s - 2t = -4$ 1 + s = -3 + 2t**B**1 For correct parametric form for either $\begin{array}{c} -2 - s = 1 + 3t \\ -4 + 2s = 5 + 4t \end{array} \right\} \Longrightarrow \begin{cases} s + 3t = -3 \\ 2s - 4t = 9 \end{cases}$ line M1* For 3 equations using 2 different parameters A1 For attempting to solve M1 (*dep) to show (in)consistency For correct conclusion \Rightarrow contradiction, so skew A1 5 2 (i) $(a+b\sqrt{5})(c+d\sqrt{5})$ M1 For using product of 2 distinct elements $= ac + 5bd + (bc + ad)\sqrt{5} \in H$ A1 2 For correct expression (ii) $(e=) 1 OR 1+0\sqrt{5}$ B1 1 For correct identity For correct inverse as $(a+b\sqrt{5})^{-1}$ EITHER $\frac{1}{a+b\sqrt{5}} \times \frac{a-b\sqrt{5}}{a-b\sqrt{5}}$ (iii) M1 and multiplying top and bottom by $OR \ \left(a+b\sqrt{5}\right)\left(c+d\sqrt{5}\right) = 1 \implies \begin{cases} ac+5bd = 1\\ bc+ad = 0 \end{cases}$ $a-b\sqrt{5}$ OR for using definition and equating parts inverse = $\frac{a}{a^2 - 5b^2} - \frac{b}{a^2 - 5b^2}\sqrt{5}$ A1 2 For correct inverse. Allow as a single fraction 5 is prime $OR \quad \sqrt{5} \notin \Box$ (iv) For a correct property (or equivalent) **B**1 1 6 3 Integrating factor = $e^{\int 2dx} = e^{2x}$ B1 For correct IF For $\frac{d}{dx}(y$ their IF) = e^{-3x} their IF $\Rightarrow \frac{d}{dx}(ye^{2x}) = e^{-x}$ M1 $\Rightarrow y e^{2x} = -e^{-x}(+c)$ A1 For correct integration both sides For substituting (0, 1) into their GS $(0,1) \Rightarrow c = 2$ M1 and solving for *c* A1√ For correct c f.t. from their GS $\Rightarrow y = -e^{-3x} + 2e^{-2x}$ A1 6 For correct solution 6 For at least 2 roots of the M1 4 (i) (z=) 2, -2, 2i, -2i form k {1, i} **AEF** For correct values A1 2

January 20

4727	Mark Sche	∍me	For $\frac{w}{1-w}$ = any one solution from (i) For attempting to solve for w,
(ii)	$\frac{w}{1-w} = 2, -2, 2i, -2i$	M1	For $\frac{w}{1-w}$ = any one solution from (i)
	$w = \frac{z}{1+z}$	M1	For attempting to solve for <i>w</i> , using any solution or in general
	$w = \frac{2}{3}, 2$	B1 A1	For any one of the 4 solutions For both real solutions
	$w = \frac{4}{5} \pm \frac{2}{5}i$	A1 5	For both complex solutions SR Allow B1 $$ and one A1 $$ from $k \neq 2$
		7	
5 (i)	$\mathbf{AB} = k \left[\frac{2}{3} \sqrt{3}, 0, -\frac{2}{3} \sqrt{6} \right],$ $\mathbf{BC} = k \left[-\sqrt{3}, 1, 0 \right], \mathbf{CA} = k \left[\frac{1}{3} \sqrt{3}, -1, \frac{2}{3} \sqrt{6} \right]$	B1 B1	For any one edge vector of ΔABC For any other edge vector of ΔABC
	$\mathbf{n} = k_1 \left[\frac{2}{3}\sqrt{6}, \frac{2}{3}\sqrt{18}, \frac{2}{3}\sqrt{3} \right] = k_2 \left[1, \sqrt{3}, \frac{1}{2}\sqrt{2} \right]$	M1	For attempting to find vector product of
		M1	any two edges For substituting A, B or C into r.n
	substitute A, B or $C \Rightarrow x + \sqrt{3}y + \frac{1}{2}\sqrt{2}z = \frac{2}{3}\sqrt{3}$	A1 5	For correct equation AG
			SR For verification only allow M1, then A1 for 2 points and A1 for the third point
(ii)	Symmetry	B1*	For quoting symmetry or reflection
	in plane OAB or Oxz or $y = 0$	B1 (*dep) 2	For correct plane Allow "in <i>y</i> coordinates" or "in <i>y</i> axis"
			SR For symmetry implied by reference to opposite signs in <i>y</i> coordinates of <i>C</i> and <i>D</i> , award B1 only
 (iii)	$\cos\theta = \frac{\left[\left[1,\sqrt{3},\frac{1}{2}\sqrt{2}\right],\left[1,-\sqrt{3},\frac{1}{2}\sqrt{2}\right]\right]}{\left[1,-\sqrt{3},\frac{1}{2}\sqrt{2}\right]}$	M1	For using scalar product of normal vectors
	$\sqrt{1+3} + \frac{1}{2}\sqrt{1+3} + \frac{1}{2}$	A1	For correct scalar product
	$=\frac{\left 1-3+\frac{1}{2}\right }{\frac{9}{2}}=\frac{\frac{3}{2}}{\frac{9}{2}}=\frac{1}{3}$	M1	For product of both moduli in denominator
	$\frac{9}{2}$ $\frac{9}{2}$ 3	A1 4	For correct answer. Allow $-\frac{1}{3}$
		11	
6 (i)	$(m^2 + 16 = 0 \Rightarrow) m = \pm 4i$	M1	For attempt to solve correct auxiliary equation (may be implied by correct
	$CF = A\cos 4x + B\sin 4x$	A1 2	CF) For correct CF
			(AEtrig but not $Ae^{4ix} + Be^{-4ix}$ only)
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = p\sin 4x + 4px\cos 4x$	M1	For differentiating PI twice, using product rule
		A1	For correct $\frac{dy}{dx}$
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 8p\cos 4x - 16px\sin 4x$	A1√	For unsimplified $\frac{d^2 y}{dx^2}$. f.t. from $\frac{dy}{dx}$
	$\Rightarrow 8p\cos 4x = 8\cos 4x$	M1	For substituting into DE
	$\Rightarrow p = 1$	A1	For correct p For using GS = CF + PI, with 2 arbitrary
	$\Rightarrow (y =)A\cos 4x + B\sin 4x + x\sin 4x$	B1√ 6	constants in CF and none in PI

Mark Scheme

4707	Marila Oaka			www.mym
4727	Mark Sche			January 26 For correct A. f.t. from their GS For differentiating their GS
(iii)	$(0,2) \Longrightarrow A = 2$	B1v	[For correct A. f.t. from their GS
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -4A\sin 4x + 4B\cos 4x + \sin 4x + 4x\cos 4x$	M1		For differentiating their GS
	$x = 0, \ \frac{\mathrm{d}y}{\mathrm{d}x} = 0 \ \Rightarrow B = 0$	M1		For substituting values for x and $\frac{dy}{dx}$
	$\Rightarrow y = 2\cos 4x + x\sin 4x$	A1	4	to find <i>B</i> For stating correct solution CAO including $y =$
		12	2]	
7 (i)	$\cos 6\theta = 0 \Longrightarrow 6\theta = k \times \frac{1}{2}\pi$	M1		For multiples of $\frac{1}{2}\pi$ seen or implied
	$\Rightarrow \theta = \frac{1}{12} \pi \{1, 3, 5, 7, 9, 11\}$	A1 A1	3	A1 for any 3 correct A1 for the rest, and no extras in $0 < \theta < \pi$
(ii)	METHOD 1			
	$\operatorname{Re}(c+\mathrm{i}s)^{6} = \cos 6\theta = c^{6} - 15c^{4}s^{2} + 15c^{2}s^{4} - s^{6}$	M1		For expanding $(c+is)^6$ at least 4 terms and 2 binomial coefficients needed
	$\cos 6\theta = c^6 - 15c^4(1 - c^2) + 15c^2(1 - c^2)^2 - (1 - c^2)^3$	A1 M1		For 4 correct terms For using $s^2 = 1 - c^2$
	$\Rightarrow \cos 6\theta = 32c^6 - 48c^4 + 18c^2 - 1$	A1		For correct expression for $\cos 6\theta$
	$\Rightarrow \cos 6\theta = \left(2c^2 - 1\right)\left(16c^4 - 16c^2 + 1\right)$	A1	5	For correct result AG (may be written down from correct $\cos 6\theta$)
	METHOD 2			
	$\operatorname{Re}(c+\mathrm{i}s)^3 = \cos 3\theta = \cos^3 \theta - 3\cos\theta \sin^2 \theta$	M1		For expanding $(c+is)^3$ at least 2 terms and 1 binomial coefficient needed
	$\Rightarrow \cos 6\theta = \cos 2\theta \left(\cos^2 2\theta - 3\sin^2 2\theta\right)$	A1 M1		For 2 correct terms For replacing θ by 2θ
	$\Rightarrow \cos 6\theta = \left(2\cos^2 \theta - 1\right) \left(4\left(2\cos^2 \theta - 1\right)^2 - 3\right)$	A1		For correct expression in $\cos\theta$ (unsimplified)
	$\Rightarrow \cos 6\theta = \left(2c^2 - 1\right)\left(16c^4 - 16c^2 + 1\right)$	A1		For correct result AG
(iii)	METHOD 1			
	$\cos 6 \theta = 0$	M1		For putting $\cos 6\theta = 0$
	$\Rightarrow 6 \text{ roots of } \cos 6\theta = 0 \text{ satisfy}$ 16c ⁴ -16c ² +1=0 and 2c ² -1=0	A1		For association of roots with quartic and quadratic
	But $\theta = \frac{1}{4}\pi, \frac{3}{4}\pi$ satisfy $2c^2 - 1 = 0$	B1		For correct association of roots with quadratic
	<i>EITHER</i> Product of 4 roots <i>OR</i> $c = \pm \frac{1}{2}\sqrt{2\pm\sqrt{3}}$	M1		For using product of 4 roots OR for solving quartic
	$\Rightarrow \cos\frac{1}{12}\pi \cos\frac{5}{12}\pi \cos\frac{7}{12}\pi \cos\frac{11}{12}\pi = \frac{1}{16}$	A1	5	For correct value (may follow A0 and B0)

4727	Mark Sch	eme	January 26
	METHOD 2		For putting $\cos 6\theta = 0$ For association of roots with sextic
	$\cos \theta = 0$	M1	For putting $\cos 6\theta = 0$
	\Rightarrow 6 roots of $\cos \theta = 0$ satisfy		For putting $\cos \theta = 0$
	$32c^{6} - 48c^{4} + 18c^{2} - 1 = 0$	A1	For association of roots with sextic
	Product of 6 roots \Rightarrow	M1	For using product of 6 roots
	$\cos\frac{1}{12}\pi \cdot \frac{1}{\sqrt{2}} \cdot \cos\frac{5}{12}\pi \cos\frac{7}{12}\pi \cdot \frac{-1}{\sqrt{2}} \cdot \cos\frac{11}{12}\pi = -\frac{1}{32}$	B1	For using $\cos\left\{\frac{3}{12}\pi, \frac{9}{12}\pi\right\} = \left\{\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right\}$
	$\cos\frac{1}{12}\pi\cos\frac{5}{12}\pi\cos\frac{7}{12}\pi\cos\frac{11}{12}\pi=\frac{1}{16}$	A1	For correct value
	12 12 12 12 10	13	
8 (i)	<u> </u>		
o (1)	$g(x) = \frac{1}{2-2 \cdot \frac{1}{2-2x}} = \frac{2-2x}{2-4x} = \frac{1-x}{1-2x}$	M1	For use of $ff(x)$
	$2-2 \cdot \frac{1}{2-2x}$ 2 w 1 2w	A1	For correct expression AG
	$gg(x) = \frac{1 - \frac{1 - x}{1 - 2x}}{1 - 2 \cdot \frac{1 - x}{1 - 2x}} = \frac{-x}{-1} = x$	M1	For use of $gg(x)$
	$gg(x) = \frac{1-2x}{1-2} = \frac{x}{-1} = x$		For correct expression \mathbf{AG}
	1 27		_
(ii)	Order of $f = 4$	B1	For correct order
(:::)	order of $g = 2$	B1 2	For correct order
(iii)	METHOD 1 $1 - 2 v - 1$		
	$y = \frac{1}{2 - 2x} \Longrightarrow x = \frac{2y - 1}{2y}$	M1	For attempt to find inverse
	2x-1 on 1	A 1 0	
	$\Rightarrow f^{-1}(x) = h(x) = \frac{2x-1}{2x} OR \ 1 - \frac{1}{2x}$	AI Z	For correct expression
	METHOD 2		
	$f^{-1} = f^3 = fg \text{ or } gf$	M1	For use of $fg(x)$ or $gf(x)$
	$1 \qquad 1-2x$		
	f g(x) = h(x) = $\frac{1}{2 - 2\left(\frac{1 - x}{1 - 2x}\right)} = \frac{1 - 2x}{-2x}$	A1	For correct expression
	$2^{-2}\left(\frac{1}{1-2x}\right)$		
(iv)			
	$\frac{e f g h}{e e f g h}$	M1	For correct row 1 and column 1
	e e f g h f f g h e	A1	For e, f, g, h in a latin square
	g g h e f	A1	For correct diagonal e - g - e - g
	h h e f g	A1 4	For correct table
	,`	12	

4728 Mechanics 1

28	Mark	Scheme	Uses $v = u + gt$
47	28 Mechanics 1		
1 i	$v = 4.2 + 9.8 \times 1.5$ $v = 18.9 \text{ ms}^{-1}$.	M1 A1 [2]	Uses $v = u + gt$ 18.9(15) from $g = 9.81$
i	s = $4.2 \times 1.5 + 9.8 \times 1.5^{2}/2$ or 18.9 ² = $4.2^{2} + 2 \times 9.8$ s	M1	Uses $s = ut + gt^2/2$ or $v^2 = u^2 + 2gs$
	s = 17.325 m	A1 [2]	Accept 17.3
iii	$v^2 = 4.2 + 2 \times 9.8 \times (17.3(25) - 5)$ $v = 16.1 \text{ ms}^{-1}$	M1 A1 [2]	$18.9^{2} = u^{2} + 2 \times 9.8 \times 5$ u = 16.1 ms ⁻¹ . Accept answers close to 16.1 from correct working
2 i	Resolves a force in 2 perpendicular directions Uses Pythagoras $R^2 = (12+19\cos 60)^2$ $+ (19\sin 60)^2$ R = 27.1 N $\{R = \sqrt{((19+12\cos 60)^2 + (12\sin 60)^2)} = 27.1\}$	M1 DM1 A1 A1 A1 [5]	Diagram for vector addition/subtraction Uses Cosine Rule $R^2 = 12^2 + 19^2 - 2 \times 12 \times 19\cos 120$ R = 27.1
1	Trig on a valid triangle for correct angle $\tan\theta = (19\sin 60)/(12 + 19\cos 60)$ etc Angle is 37.4°, 37.5°	M1 A1 A1 [3]	Either Pythagoras or vector add/sub triangle $sin\theta/19 = sin120/(27.1)$ etc
ia	+/- $(9m + 2 \times 0.8)$ {+/- $(3.5 \times 0.8 - 2 \times 0.8)$ } +/- $(-3.5m + 3.5 \times 0.8)$ {+/- $(9m + 3.5m)$ } +/- $(9m + 2 \times 0.8) = +/-(-3.5m + 3.5 \times 0.8)$ m = 0.096 kg	B1 B1 M1 A1	Before mom, or mom change Q, OK with g After mom, or mom change P, OK with g Equates moms, or changes, accept with g Do not award if g used
ib	+/-0.096(9+/-3.5) OR +/-0.8(3.5 -2) +/-1.2 kgms ⁻¹	[4] M1 A1ft [2]	Using before & after speeds of P or Q, no g ft $12.5 \times cv(0.096)$
ii	(0.8+0.4)v or 0.8v + 0.4v 3.5 × 0.8 + 0.4 × 2.75 = (0.8+0.4)v v = 3.25 ms ⁻¹	M1 A1 A1 [3]	Using Q and R common speed after, no g 2.8 + 1.1 = 1.2v
4ia	0.3gcos 60 and 0.3gsin60 0.4gcos60 and 0.4gsin60 Calculates either relevant difference Perp = 0.1gcos60 and Para = +/- 0.1gsin60	B1 B1 M1 A1	Accept use of "m = 0.1 kg" for M1 and 0.1gcos60 (B1) 0.1gsin60 (B1) = 0.49 and = 0.849 (accept 0.85 and 0.84)
ib	$0.1gsin60 = \mu 0.1gcos60$ = 1.73 (= $\sqrt{3}$)	[4] M1 A1 [2]	$F = \mu R, F > R > 0$ From correct R, F values

728	Mark S	Scheme	N2L for either particle no resolving, at least 1 unknown Formula round the pulley, M0A0.
4 ii	$\begin{array}{l} 0.5g - T = 0.5a \\ T - 0.4g = 0.4a \\ a = 1.09 \text{ ms}^{-2} \\ T = 4.36 \text{ N} \end{array}$	M1 A1 B1 B1 [4]	N2L for either particle no resolving, at least 1 unknown Formula round the pulley, M0A0. But award M1 for T- $0.4g = 0.4 \times 1.09$ etc later Both equations correct
5 i	11 = 3 + 20a (a = 0.4)8 = 3 + (11-3)t/20t = 12.5	M1 M1 A1 [3]	Uses $v = u + at$, no zero terms Their a>0. $t/20 = (8-3)/(11-3)$ is M1M1
ii	$s(A,20) = 8 \times 20 (=160)$ $s(B,20) = (3 +11) \times 20/2 =$ $3 \times 20 + 0.4 \times 20^{2}/2 (=140)$ $8T = (3+11) \times 20/2 + 11 \times (T-20)$ or $(160 - 140) = 11t - 8t$ T = 26 2/3	B1 B1 M1 A1 A1 [5]	Or $s(A) = 8T$ or as stage of $s(B)=(3+11)\times 20/2 + 11\times (T-20)$ 3 part equation balancing distances Accept 26.6 or 26.7
iii		B1 B1 B1 [3]	Linear rising graph (for A) starting at B's start Non-linear rising graph for B below A's initially. Accept 2 straight lines as non-linear. Single valued graphs graphs intersect and continue
6 i	$a = 2 \times 0.006t - 0.18$ a = 0.012t - 0.18	M1 A1 [2]	Differentiates v (not v/t) Award for unsimplified form, accept +c, not +k
ii	$\begin{array}{c} 0.012t - 0.18 = 0 \\ t = 15 \\ 0.006 \times 15^2 - 0.18 \times 15 + k = 0.65 \\ k = 2 \end{array} \qquad \qquad$	M1* A1 D*M1 A1 A1 [5]	Sets a = 0, and solves for t Substitutes t(v(min)) in v(t)
iii	$s = 0.006t^{3}/3 - 0.18t^{2}/2 + 2t (+c)$ (s = 0.002t ³ - 0.09t ² + 2t (+c)) t = 0, s = 0 hence c = 0 L = 0.002 × 28.4 ³ - 0.09 × 28.4 ² + 2 × 28.4 L = 30.0 m	M1A1 B1 M1 A1 [5]	Integrates v (not multiplies by t). Award if +c omitted, accept kt Explicit, not implied (or uses limits 0, 28.4) Substitutes 28.4 or 14.2 in s(t), (and k=2) Accept a r t 30(.0), accept +c

4728	Mark S	Scheme	$\frac{w_{WW}}{January 2}$
7 i	$(Fr =) 0.15 \times 600gcos10$ (Wt cmpt =) 600gsin10 $600 \times 0.11 = T - 0.15 \times 600gcos10 -$	B1 B1 M1	N2L. T with at least 1 resolved forces and
	600gsin10 (66 = T - 868.6 - 1021) T = 1960 N	A1 A1 [5]	600 × 0.11 1955.6
ii a	$a(up) = +/-(600gsin10+.15\times600gcos10)/600$ $a(up) = +/-3.15 ms^{-2}$ AG	M1 A1 [2]	2 resolved forces and 600a or "unit mass" Disregard sign, accept 3.149
b	UP $v^2 = 2 \times 0.11 \times 10$ v = 1.48 when cable breaks t = 1.48/3.149 ($t = 0.471$ time for log to come to rest) $s = 1.48^2/(2 \times 3.149)$ s = 0.349 distance for log to come to	M1 A1 M1 M1 A1	Correct, need not be accurate Or $1.48 = 0 + 3.15t$ Correct, need not be accurate
	rest DOWN $a(down) = (600gsin10-0.15 \times 600gcos10)/600$ $10+0.349= 0.254t^2/2$ t = 9.025 T = (9.025 + 0.471) = 9.5 s	B1 M1 A1 [9]	= 0.254 Needs a< 3.15, s>10. Or V ² = 2×0.254× (10+0.349) [V= 2.29], V=0.254t Correct, need not be accurate Accept 9.49

4729 Mechanics 2

4729	Ν	lark Scho	eme	Average Speed = $40 \div 120$ (75×9.8)×(Average speed)	nymau
472	9 Mechanics 2				
1	75×9.8×40	B1		Average Speed = 40÷120	
	(75×9.8×40)÷120	M1		(75×9.8)×(Average speed)	
	245 W	A1	[3]		3
2 (i)	$v^2 = 2 \times 9.8 \times 3$ or $2 \times 9.8 \times 1.8$	M1		Kinematics or energy	
	$v_1 = \sqrt{6g}$ or $\sqrt{58.8}$ or $\frac{7}{5}\sqrt{30}$ or 7.67	A1		Speed of impact (±)	
	$v_{1} = \sqrt{6g} \text{ or } \sqrt{58.8} \text{ or } \frac{7}{5} \sqrt{30} \text{ or } 7.67$ $v_{2} = \sqrt{3.6g} \text{ or } \sqrt{35.28} \text{ or } \frac{21}{5} \sqrt{2} \text{ or } 5.94$	A1		Speed of rebound (±)	
	$I = \pm 0.2(5.94 + 7.67)$	M1			
	2.72	A1ft	[5]	+ve, ft on $v_{1 and} v_{2}$	
(ii)	e = 5.94/7.67	M1			
	0.775 or $\frac{\sqrt{15}}{5}$	A1ft	[2]	Allow 0.774, ft on v_1 and v_2	7
3 (i)	$\bar{u} = 0.2$ (from vertex) or 0.8 or 0.1 0.5 $\bar{d} = 0.2 \times \bar{u} + 0.3 \times 0.65$	B1 M1		com of conical shell	
	d = 0.47	A1 A1	[4]	AG	
(ii)	s = 0.5	B1		slant height, may be implied	
	$Tsin80^{\circ} \times 0.5 = 0.47 \times 0.5 \times 9.8$	M1			
	T = 4.68 N	A1 A1	[4]		8
4 (i)	$D - 400 = 700 \times 0.5$	M1		3 terms	
~ /	D = 750 N	A1	[2]		
(ii)	$P = 750 \times 12$	M1			
	9 000 W or 9 kW	Alft	[2]		
(iii)	P/35 = 400	M1			
	14 000 W or 14 kW	A1	[2]		
(iv)	D = 14000/12	B1ft		May be implied	
	$3500/3 = 400 + 700 \times 9.8 \sin\theta$	M1 A1		3 terms Their P/12	
	$\theta = 6.42^{\circ}$	AI A1	[4]		10

4729	Mar	k Sch	ieme	hun Mun Mun Janu	My Assiss
5	16 - 12 = 2x + 3y	M1			
	4 = 2x + 3y $\frac{1}{2} \cdot 2(8)^2 + \frac{1}{2} \cdot 3(4)^2 \text{ or } \frac{1}{2} \cdot 2x^2 + \frac{1}{2} \cdot 3y^2 \text{ or}$	A1 B1		aef	3
	$\pm \frac{1}{2} \cdot 2(8^{2} - x^{2}) \text{ or } \pm \frac{1}{2} \cdot 3(4^{2} - y^{2})$ $\frac{1}{2} \cdot 2(8)^{2} + \frac{1}{2} \cdot 3(4)^{2} - \frac{1}{2} \cdot 2x^{2} - \frac{1}{2} \cdot 3y^{2} = 81$	M1			
	$2x^2 + 3y^2 = 14$ Attempt to eliminate x or y from a linear and	A1 M1		aef	
	a quadratic equation $15y^2 - 24y - 12 = 0$ or $10x^2 - 16x - 26 = 0$	A1		aef	
	Attempt to solve a three term quadratic $x = -1$ (or $x = 2.6$)	M1 A1			
	y = 2 (or $y = -2/5$)	Al			
	x = -1 and $y = 2$ only	A1			
	speeds 1, 2 away from each other	A1	[12]	12	
6 (i)	$30^2 = V_1^2 \sin^2 \theta_1 - 2 \times 9.8 \times 250$	M1		$\frac{1}{2m} V_1^2 = \frac{1}{2m} 50^2 + m \times 9.8 \times 250$	-
	$V_1^2 \sin^2 \theta_1 = 5800 \text{ AEF}$	A1			
	$V_1 \cos \theta_1 = 40$	B1			
	$V_1 = 86.0$ $\theta_1 = 62.3^{\circ}$	A1 A1	[5]	AG AG	
		111	[5]		
(ii)	$0 = \sqrt{5800} t_{\rm p} - 4.9 t_{\rm p}^{2}$	M1		$30 = V_1 \sin \theta_1 - 9.8t$	1
	$t_{p} = 15.5$	A1		t = 4.71	
	$-\sqrt{5800} = 30 - 9.8t_q$	M1			
	$t_q = 10.8$	A1	[4]		
(iii)	$R = 40 \times 15.5$	M1			1
	R = 621	A1		(620, 622) K = = 57.4	
	$V_2 \cos \theta_2 \times 10.8 = 621 0 = V_2 \sin \theta_2 \times 10.8 - 4.9 \times 10.8^2$	B1 M1		$V_2 \cos \theta_2 = 57.4$	
	$V_2 \sin \theta_2 = 53.1 \text{ or } 53.0$	A1		(52.9,53.1)	
	Method to find a value of V_2 or θ_2	M1			
	$\theta_2 = 42.8^{\circ}$ $V_2 = 78.2 \text{ m s}^{-1} \text{ or } 78.1 \text{ m s}^{-1}$	A1 A1	[Q]	42.6° to 42.9° or 78.1° 17	
			[8]		
7 (i)	$\cos\theta = 3/5 \text{ or } \sin\theta = 4/5 \text{ or } \tan\theta = 4/3$ or $\theta = 53.1^{\circ}$	B1		θ = angle to vertical	
	$R\cos\theta = 0.2 \times 9.8$	M1	101		
	R = 3.27 N or 49/15	A1	[3]		
(ii)	r = 4	B1			-
	$R\sin\theta = 0.2 \times 4 \times \omega^2$	M1			
	$\omega = 1.81 \text{ rad s}^{-1}$	A1 A1	[4]		

4729	Marl	¢ Sche	eme		MMW. ITSTRATISCIOLIDICOM
(iii)	$\varphi = 26.6^{\circ} \text{ or } \sin \varphi = \frac{1}{\sqrt{5}} \text{ or } \cos \varphi = \frac{2}{\sqrt{5}} \text{ or }$	B1		φ = angle to horizontal	.com
	VS VS				
	$\tan \varphi = 0.5$				
	T = 0.98 or 0.1g	B1			
	$N\cos\theta = T\sin\varphi + 0.2 \times 9.8$	M1		Vertically, 3 terms	
	$N \times 3/5 = 0.438 + 1.96$	A1			
	N = 4.00	A1		may be implied	
	$N\sin\theta + T\cos\varphi = 0.2 \times 4 \times \omega^2$	M1		Horizontally, 3 terms	
	$4 \times 4/5 + 0.98 \cos 26.6^\circ = 0.8\omega^2$	A1			
	$\omega = 2.26 \text{ rad s}^{-1}$	A1	[8]		15

4730 Mechanics 3

1	$0.4(3\cos 60^{\circ} - 4) = -I \cos \theta \qquad (= -1)$ $0.4(3\sin 60^{\circ}) = I \sin \theta \qquad (= 1.03920)$ $[\tan \theta = -1.5 \sqrt{3} / (1.5 - 4);$ $I^{2} = 0.4^{2}[(1.5 - 4)^{2} + (1.5 \sqrt{3})^{2}]]$ $\theta = 46.1 \text{ or } I = 1.44$ $I = 1.44 \text{ or } \theta = 46.1$	M1 A1 A1 M1 A1 M1 A1ft [7]	For using I = Δmv in one direction SR: Allow B1 (max 1/3) for $3\cos 60^{\circ} - 4 = -I \cos \theta$ and $3\sin 60^{\circ} = I\sin \theta$ For eliminating I or θ (allow following SR case) Allow for θ (only) following SR case. For substituting for θ or for I (allow following SR case) ft incorrect θ or I; allow for θ (only) following SR case.
	Alternatively $I^{2} = 1.2^{2} + 1.6^{2} - 2 \times 1.2 \times 1.6 \cos 60^{\circ} \text{or}$ $`V'^{2} = 3^{2} + 4^{2} - 2 \times 3 \times 4 \cos 60^{\circ}$ $I = 1.44$ $\frac{\sin \theta}{3(or1.2)} = \frac{\sin 60}{\sqrt{13(or2.08)}} \text{ or}$ $\frac{\sin \alpha}{4(or1.6)} = \frac{\sin 60}{\sqrt{13(or2.08)}} and \theta = 120 - \alpha$ $\theta = 46.1$	M1 A1 M1 A1 M1 A1ft A1 [7]	For use of cosine rule For correct use of factor 0.4 (= m) For use of sine rule α must be angle opposite 1.6; (α = 73.9) ft value of I or 'V'
2 3(i)	$2a + 3b = 2 \times 4$ $b - a = 0.6 \times 4$ [2(b - 2.4) + 3b = 8] b = 2.56 v = 2.56 $2W(a \cos 45^{\circ}) = T(2a)$ $W = \sqrt{2} T$	M1 A1 M1 A1 M1 A1 B1ft [7] M1 A1 A1 [3]	For using the principle of conservation of momentum For using NEL For eliminating a ft v = b For using 'mmt of 2W = mmt of T' AG
(ii)	Components (H, V) of force on BC at B are $H = -T/\sqrt{2}$ and $V = T/\sqrt{2} - 2W$ $W(a \cos \alpha) + H(2a \sin \alpha) = V(2a \cos \alpha)$ $[W \cos \alpha - T\sqrt{2} \sin \alpha = T\sqrt{2} \cos \alpha - 4W \cos \alpha]$ $T\sqrt{2} \sin \alpha = (5W - T\sqrt{2}) \cos \alpha$ $\tan \alpha = 4$	B1 M1 A1 M1 A1ft A1 [6]	For taking moments about C for BC For substituting for H and V and reducing equation to the form $X \sin \alpha = Y \cos \alpha$

'30	Mark SchemeMun, mun, mun, mun, mun, mun, mun, mun, m							
	Alternatively for part (ii)							
	antiala alumiaa muut -	M1	For taking moments about C for the whole					
	anticlockwise mmt = $W(a \cos \alpha) + 2W(2a \cos \alpha + a \cos 45^{\circ})$	A1						
	$= T[2a \cos(\alpha - 45^{\circ}) + 2a]$	A1 A1						
	$\begin{bmatrix} 5W \cos(\alpha + \sqrt{2}) + 2\alpha \end{bmatrix}$	111	For reducing equation to the form					
	$\frac{1}{T}\left(\sqrt{2}\cos\alpha + \sqrt{2}\sin\alpha\right) + 2\right]$	M1	$X \sin \alpha = Y \cos \alpha$					
	$T\sqrt{2} \sin \alpha = (5W - T\sqrt{2}) \cos \alpha$	A1ft						
	$\tan \alpha = 4$	A1						
	$[0, 2(x + x^2) - 0, 2x]$	[6]	For using Mouton's second low					
)	$\begin{bmatrix} -0.2(v + v^{2}) = 0.2a \\ [v dv/dx = -(v + v^{2}) \end{bmatrix}$	M1 M1	For using Newton's second law For using $a = v dv/dx$					
	[1/(1 + v)] dv/dx = -1	Al	AG					
		[3]						
		M1	For integrating					
	$\ln (1 + v) = -x (+ C)$	A1						
	$\ln(1+v) = -x + \ln 3$	A1						
	$[(1 + dx/dt)/3 = e^{-x} \rightarrow dx/dt = 3e^{-x} - 1$ \$\Rightarrow e^{x} dx/dt = 3 - e^{x}]	M1	For transposing for v and using $v = dx/dt$					
	$[-e^{x}/(3-e^{x})] dx/dt = -1$	Al	AG					
		[5]						
)	$[\ln(3 - e^x) = -t + \ln 2]$	M1	For integrating and using $x(0) = 0$					
	$\ln(3-e^x) = -t + \ln 2$	A1						
	Value of t is 1.96 (or $\ln{2 \div (3 - e)}$	A1 [3]						
)	$1 = (221)^{2} = $	M1	For using $EE = \lambda x^2/2L$ and $PE = Wh$					
	Loss of EE = $120(0.5^2 - 0.3^2)/(2 \times 1.6)$ and gain in PE = 1.5×4	A1						
	and gain in $FE = 1.3 \times 4$	M1	For comparing EE loss and PE gain					
	v = 0 at B and loss of EE = gain in PE (= 6)							
	→distance AB is 4m	A1 [4]	AG					
)	[120e/1.6 = 1.5]	M1	For using T = mg and T = $\lambda x/L$					
	e = 0.02	A1						
	Loss of EE = $120(0.5^2 - 0.02^2)/(2 \times 1.6)$							
	$(\text{or } 120(0.3^2 - 0.02^2)/(2 \times 1.6))$	B1ft	ft incorrect e only					
	Gain in PE = $1.5(2.1 - 1.6 - 0.02)$ (or $1.5(1.9 + 1.6 + 0.02)$ loss)	B1ft	ft incorrect e only					
	[KE at max speed = 9.36 - 0.72]	חות	For using KE at max speed					
	(or 3.36 + 5.28)	M1	= Loss of EE – Gain (or + loss) in PE					
	$\frac{1}{2}(1.5/9.8)v^2 = 9.36 - 0.72$	A1						
	Maximum speed is 10.6 ms ⁻¹	A1						
		[7]						
	First alternative for (ii) x is distance AP							
	$\begin{bmatrix} \frac{1}{2} (1.5/9.8)v^2 + 1.5x + 120(0.5 - x)^2/3.2 = \\ \end{bmatrix}$							
	$\frac{120 \times 0.5^2}{3.2}$	M1	For using energy at $P =$ energy at A					
	KE and PE terms correct	A1						
	EE terms correct	A1						
	$v^2 = 470.4x - 490x^2$	A1 M1	$\int c_{2} dt = \frac{1}{2} \int dt = \frac{1}{2$					
	$\begin{bmatrix} 470.4 - 980x = 0 \\ x = 0.48 \end{bmatrix}$	M1 A1	For attempting to solve $dv^2/dx = 0$					
	Maximum speed is 10.6 ms^{-1}	AI A1						

730	N	lark So	cheme Janu
	Second alternative for (ii)		cheme Jan. For using T = mg and T = $\lambda x/L$ For using Newton's second law
	[120e/1.6 = 1.5]	M1	For using T = mg and T = $\lambda x/L$
	e = 0.02	A1	
	$[1.5 - 120(0.02 + x)/1.6 = 1.5 \ddot{x}/g]$	M1	For using Newton's second law For obtaining the equation in the form $\ddot{x} = -n^2x$, using (AB – L – e _{equil}) for
		M1	amplitude and using $v_{max} = na$.
	$n = \sqrt{490}$	A1	
	a = 0.48	A1	
	Maximum speed is 10.6 ms ⁻¹	A1	
(i)	PE gain by P = $0.4g \times 0.8 \sin \theta$	B1	
()	PE loss by Q = $0.58g \times 0.8\theta$	B1	
		M1	For using KE gain = PE loss
	$\frac{1}{2}(0.4 + 0.58)v^2 = g \times 0.8(0.58\theta - 0.4\sin\theta)$	A1ft A1	AEF
	$v^2 = 9.28 \theta - 6.4 \sin \theta$	[5]	
i)			For applying Newton's second law to P and
		M1	using $a = v^2/r$
	$0.4g \sin \theta - R = 0.4v^2/0.8$	A1 M1	For substituting for v^2
	$\begin{bmatrix} 0.4g \sin\theta - R = 4.64\theta - 3.2 \sin\theta \\ R = 7.12 \sin\theta - 4.64\theta \end{bmatrix}$	Al	AG
	K = 7.12 SHI U = 4.04 U	[4]	
i)	R(1.53) = 0.01(48), R(1.54) = -0.02(9) or simply $R(1.53) > 0$ and $R(1.54) < 0$	M1 A1	For substituting 1.53 and 1.54 into $R(\theta)$
	r y (, () .		For using the idea that if $R(1.53)$ and $R(1.54)$ are of opposite signs then R is zero
		M1	(and thus P leaves the surface) for some
	$R(1.53) \times R(1.54) < 0 \Rightarrow 1.53 < \alpha < 1.54$	Al	value of θ between 1.53 and 1.54. AG
		[4]	
i)		M1	For using $T = \lambda e/L$
	$T_{AP} = 19.6e/1.6$ and $T_{BP} = 19.6(1.6-e)/1.6$	A1 M1	For resolving forces percelled to the plane
	$0.5g \sin 30^\circ + 12.25(1.6 - e) = 12.25e$	A1ft	For resolving forces parallel to the plane
	Distance AP is 2.5m	A1	
)	Extensions of AP and BP are 0.9 + x and	[5]	
	$\begin{array}{c} 0.7 - x \text{ respectively} \\ 0.5g \sin 30^\circ + 19.6(0.7 - x)/1.6 \\ - 19.6(0.9 + x)/1.6 = 0.5 \ddot{x} \end{array}$	B1 B1ft	
	$\ddot{x} = -49x$	BIII B1	AG
		M1	For stating k < 0 and using T = $2\pi/\sqrt{-k}$
	Period is 0.898 s	A1	
		[5] M1	For using $v^2 = \omega^2 (A^2 - x^2)$ where $\omega^2 = -k$
ii)	$2.8^2 = 49(0.5^2 - x^2)$	A1ft	For using $v^{-} = \omega^{-}(A^{-} - x^{-})$ where $\omega^{-} = -k$ ft incorrect value of k
	$x^2 = 0.09$	Al	May be implied by a value of x
			ft incorrect value of k or incorrect value of
	x = 0.3 and -0.3	A1ft	\mathbf{x}^2 (stated)

4732 Probability & Statistics 1

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding Penalise over-rounding only once in paper.

(iv)		8			
(:)		Larger oe	B1	1	
(iii)		none or unchanged or "0.139" oe	B1	1	
		pts not close to line oe	B1		
(ii)		Small, low or not close to 1 or close to 0 oe	B1 f	ι	1^{st} B1 about value of <i>r</i> 2^{nd} B1 about diag
(:•)		= 0.139 (3 sfs)	Al		1 st D1 about value of r
		$\overline{\sqrt{(S_{hh}S_{mm})}}$			
		$r = \underline{S_{hm}}$	M1		ft their Ss
		$S_{mm} = 27.212$	B1		any one S correct
5 (1)		$S_{hm} = 0.10992$			
3 (i)	.41	$S_{hm} = 0.2412$	[1.	' 1	Allow x or $\div 5$
Tot	<u> </u>		[13		
	(b)	decrease	B1	- <u>1</u>	
(iv)	 (a)	increase	B1	$\frac{2}{1}$	
		16 - 20	B1	2	or third class oe
(111)		1^{st} two classes contain 14 values	M1		oe
(iii)		20.5^{th} value requ'd <u>and</u>		- <u>-</u>	condone 20 th
(ii)		20 - 5 = 4	A1	2	condone $20 \div [4,5]$ or ans 5
(::)		or exact values unknown oe 20 ÷ 5	M1		condona $20 \div [4, 5]$ or and 5
	(b)	mid pts used or data grouped	B1	1	not "orig values were guesses"
					$\div 4 \Rightarrow \max B1M0A0M1M0A0$
			A1	6	M1,3.84 A1.
		= 3.84 (3 sfs)		($\sum (1-17.65)^2 f$, at least 3 M1,÷40, $$
		$\sqrt{\frac{40}{40}} - 17.05$ (= v14.74)	M1		\div 40,-mean ² , $\sqrt{.Dep}$ >0.
		$\sqrt{\frac{"13050.5"}{40}} - "17.65"^2 \qquad (=\sqrt{14.74})$			
		$\Sigma l^2 f$ (= 13050.5)	M1		\geq three $l^2 f$ seen
		= 17.65	A1		[17.575,17.7]
	()	$\Sigma lf \div \Sigma f$ (= 706 ÷ 40)	M1		<i>l</i> within class, \geq three <i>lf</i> seen
2 (i)	(a)	Use of correct midpts	B1	•	11,14,18,25.5
Tot	tal		[9]	~
					Allow 'change'
		r · · · · · · · · · · · · · · · · · · ·		-	or similar
		or prob will increase each time	B1	2	or prob will decrease each time
		hence independence unlikely			hence independence unlikely
(m)		intery to improve with practice			1^{st} B1 must be in context.
(iii)		likely to improve with practice	B1		or thread strands gradually separate
					1/3,2/3 used M1in (a) M1 in (b)
			111	5	0.5, 0.7 middle of 0.7 of 0.7 alone. 0.6 not 0.7 M0 in (a) M1 in (b)
		= 0.168 (3 sfs)	A1	3	$0.3, 0.7$ muddle or 0.7^4 or 0.7^6 alone.
					wrong or $1-0.7^5$ or $(0.3++0.7^4\times0.3)$ or
					$+0.7 \times 0.3$) M1 for one term omitted or extra or
	(b)	0.75	M2		or 1-(0.3+0.7×0.3+0.7 ² ×0.3+0.7 ³ ×0.3 +0.7 ⁴ ×0.3)
		= 0.0720 (3sf)	Al	2	Condone 0.072
(ii)	(a)	$0.7^4 \times 0.3$	M1	-	a 1
		prob of succeeding in threading const	<u>B1</u>	2	in context

4732	Mark S	cheme	b_{MM} $January 2$ $\geq 2 \text{ non-zero terms seen}$ $If \div 3 \text{ or } 4 \text{ M0M0M1(poss)}$
(i)	$(0 \times \frac{1}{2}) + 1 \times \frac{1}{4} + 2 \times \frac{1}{8} + 3 \times \frac{1}{8}$	M1	\geq 2 non-zero terms seen
	$=\frac{7}{8}$ or 0.875 oe	A1	If ÷3 or 4 M0M0M1(poss)
	$ (0 \times \frac{1}{2}) + 1 \times \frac{1}{4} + 2^{2} \times \frac{1}{8} + 3^{2} \times \frac{1}{8} $ (= $1\frac{7}{8}$)	M1	\geq 2 non-zero terms seen
	$-(\frac{7}{8})^{2}$	M1	dep +ve result M1 all4 (x-0.875) ² terms seen.
	$=\frac{71}{64}$ or 1.11 (3 sfs) oe	A1 5	
(ii)	Bin stated or implied 0.922 (3 sfs)	M1 A1 2	Eg table or $\frac{1}{4}^n \times \frac{3}{4}^m$ (<i>n</i> + <i>m</i> =10,n,m≠1) or10C4 or 5(or 4 or 6) terms correct
(iii)	$n = 10 \& p = \frac{1}{8}$ stated or implied	M1	
	$ \begin{vmatrix} {}^{10}C_4 \times \frac{7}{8} {}^6 \times \frac{1}{8}^4 \\ = 0.0230 \; (3 \; \text{sfs}) $	M1	condone 0.023
Total		A1 3 [10]	
(i)	$\frac{\frac{6}{14} \times \frac{5}{13} \times \frac{3}{12}}{\times 3! \text{ oe}}$	M1 M1	${}^{6}C_{1} \times {}^{5}C_{1} \times {}^{3}C_{1}$ $\div {}^{14}C_{3}$ With repl M0M1A0
	$=\frac{45}{182}$ or 0.247 (3 sfs)oe	A1 3	-
(ii)	$\begin{vmatrix} \frac{6}{14} \times \frac{5}{13} \times \frac{4}{12} + \frac{5}{14} \times \frac{4}{13} \times \frac{3}{12} + \frac{3}{14} \times \frac{2}{13} \times \frac{1}{12} \\ = \frac{31}{364} \text{ or } 0.0852 \text{ (3 sf)} \end{vmatrix}$	M2 A1 3	${}^{6}C_{3} + {}^{5}C_{3} + {}^{3}C_{3}$ M1 for any one ($\div {}^{14}C_{3}$)M1 all 9 numerators correct. With repl M1(6/14) ³ +(5/14) ³ +(3/14) ³
Total	304	[6]	
(a)	A: diag or explanation showing pts close to st line, always increasing B:Diag or expl based on r=1=>pts on st line =>r(s)=1	B1 B1 B1 3	Diag or expl based on r(s)≠ 1=>pts not on st line =>r≠ 1 r=1=>pts on st line&r(s)≠ 1=>pts not on st line B1B1 r=1=>r(s)=1 B2
(b)	$\overline{y} = 2.4 \times 4.5 + 3.7$ = 14.5 4.5 = 0.4 × "14.5"- c c = 1.3 a'=x-b'y :-14.5 M1A1; then a'=4.5-0.4x14.5=-1.3 M1A1	M1 A1 M1 A1 4	Attempt to sub expression for y x= $0.96x+1.48$ -c oe sub x= 4.5 and solve c= 1.3 14.5 M1A1.(y- 3.7)/ 2.4 = $0.4y$ -c and sub14.5 M1 c= 1.3 A1
Total		[7]	
(i)	²⁵ / ₃₇	B2 2	B1 num, B1 denom 25/37xp B1
(ii)	$\frac{15}{23} \text{ seen or implied}$ $\times \frac{39}{59} \text{ seen or implied}$ $= \frac{585}{1357} \text{ or } 0.431 \text{ (3 sfs) oe}$	M1 M2 A1 4	M1 num, M1 denom Allow M1 for 39/59x or + wrong p

			mm.m.
4732		Mark Scheme	January 2
8 (i)	$= \frac{51}{2}$	M1 A1 2	Allow 5P3
(ii)	4! = 24	M1 A1 2	Allow 2×4!
(iii)	$\frac{\frac{2}{5} \times \frac{3}{4} \text{ or } \frac{3}{5} \times \frac{2}{4}}{\frac{2}{5} \times \frac{3}{5} \text{ oe}}$	M1 M1 A1 3	allow M1 for ${}^{2}/{}_{5} \times {}^{3}/{}_{5} \times 2$ or ${}^{12}/{}_{25}$ or $(6 \times 3!)$ ÷(i) M2 or 3!÷(i),6÷(i),(6+6)÷(i),6k÷(i) or 6×6 or 36 or 1-correct answer M1 (k,integer ≤ 5)
Total	p^2	[7]	
<u>9 (i)</u> (ii)	$\frac{p}{(q^2p)^2}$ oe =AG	B1 1 B1 1	
(iii)	r=q ²	B1	May be implied
	a/(1-r) used	M1	With a=p ² and r=q ² or q ⁴
	$(S_{\infty}=) \frac{p^2}{1-q^2}$	A1	
		M1	Attempt to simplify using $p+q=1$ correctly. Dep on $r = q^2$ or q^4
	$= \frac{p^2}{1 - (1 - p)^2}$		$\frac{(1-q)^2}{(1-q)(1+q)}$ or p ² /p(1+q)
	p/(2-p) AG	A1 5	Correctly obtain given answer showing at least one intermediate step.
P2Total		[7]	

Total 72 marks

4733 Probability & Statistics 2

Penalise over-specified answers (> 6 SF) first time but only once per paper. Use Or Oto annotate "over-assertive" or "no context" respectively

		Use A of C to annotate of		live	
1		$\hat{\mu} = \bar{x} = 15.16$	B1		15.16 or 15.2 as answer only
		$\hat{\sigma}^2 = \frac{5}{4}s^2$	M1		Use $\frac{\Sigma x^2}{5} - \bar{x}^2$ [=1.0904]
			M1		Multiply by 5/4, or equiv for single formula
		=1.363	A1	4	Final answer 1.36 or 1.363 only, <i>not</i> isw
2	(i)	Not all equally likely – those in	M1		Not all equally likely stated or implied
_	(-)	range 0 to 199 more likely to be	A1	2	Justified by reference to numbers, no
		chosen			spurious reasons
	(ii)	Ignore random numbers greater	B1	1	Any valid resolution of this problem, no
	()	than 799, or 399			spurious reasons
3		$B(60, 0.35) \approx N(21, 13.65)$	M1		B(60, 0.35) stated or implied
			M1		N(21,)
		$\Phi\left(\frac{18.5-21}{\sqrt{13.65}}\right) = \Phi(-0.6767)$	A1		Variance or $SD = 13.65$
			M1		Standardise, their <i>np</i> and \sqrt{npq} or <i>npq</i> ,
		= 1 - 0.7507			wrong or no cc
			A1		Both \sqrt{npq} and cc correct
		=0.2493	A1	6	Answer, a.r.t. 0.249
4		$H_0: \mu = 60; H_1: \mu < 60$	B2		Both correct, B2
		(α) $z = \frac{58.9 - 60}{\sqrt{5^2 / 80}} = -1.967$			B1 for one error, but not x, t, \overline{x} or \overline{t}
		$2 - \frac{\sqrt{5^2/80}}{\sqrt{5^2/80}} = -1.907$	M1		Standardise 58.9 & $\sqrt{80}$, allow – or $\sqrt{100}$ errors
		•• • ••	A1		<i>z</i> , art –1.97 or <i>p</i> in range [0.024, 0.025]
		<-1.645	B1		Explicit comparison with -1.645 or 0.05, or
					+1.645 or 0.95 if 1.967 or 0.976 used
	or:	$(\beta)_c = 60 - 1.645 \times \frac{5}{\sqrt{80}} = 59.08$	M1		$60 - z \times 5/\sqrt{80}$, any $z = \Phi^{-1}$, allow $\sqrt{2}$ errors or
			B1		\pm , not just +; $z = 1.645$ and compare 58.9
		58.9 < 59.08	A1		59.1 or better, \checkmark on wrong z
		Reject H ₀	M1		Correct first conclusion, needs essentially
				_	correct method including $\sqrt{80}$ or 80
		Significant evidence that people	A1	7	Contextualised, uncertainty acknowledged
		underestimate time			SR: $\mu = 58.9$: B0M1A0B1 max 2/7
		•			SR: 2-tail: max 5/7
5	(i)	$H_0: \lambda = 11.0$	B2		Allow μ . Both correct, B2
		$H_1: \lambda > 11.0$	M1		One error: B1, but not C, x etc
		(α) P(≥ 19) = 1 - 0.9823	M1		Find $P(\ge 19)$ [or $P(<19)$ if later 0.95]
		= 0.0177	A1 B1		art 0.0177 [0.9823, ditto]
		< 0.05			Compare 0.05 [0.95 if consistent], needs M1
		(\mathbf{R}) $(\mathbf{D} > 19)$	M1		CR or CV 16/17/18/19 stated or clearly
		$(\beta) \qquad CR \ge 18,$	1011		implied, but not <
		$P(\geq 18) = 0.0322$	A1		18 and 0.0322 both seen, allow 0.9678
		10 > 18	B1		Explicit comparison with 19, needs M1
		Reject H ₀	M1		Needs essentially correct method &
		<u> </u>			comparison
		Significant evidence of an	A1	7	Contextualised, uncertainty acknowledged
		increase in number of customers			SR: Normal, or $P(= 19)$ or $P(\le 19)$ or
					P(> 19): First B2 only.
	(ii)	Can't deduce cause-and-effect, or	B1	1	Conclusion needed. No spurious reasons.
	. /	there may be other factors			If "DNR" in (i), "couldn't deduce even
		-			if"
		<u>.</u>			<u> </u>

					m
					e January 2
47	33	N	lark Sc	chem	January 2. 2
6	(i)	(a) Probabilities don't total 1	B1	1	Equivalent statement
		(b) $P(>70)$ must be $< P(>50)$	B1	1	Equivalent statement
		(c) $P(>50) = 0.3 \implies \mu < 50$	B1	1	Any relevant valid statement, e.g. " $P(< 50)$
		$P(<70) = 0.3 \Longrightarrow \mu > 70$			= 0.7 but P(< 50) must be < P(< 70)"
	(ii)	$\mu = 60$ by symmetry	B1		$\mu = 60$ obtained at any point, allow from Φ
		$\frac{10}{\sigma} = \Phi^{-1}(0.7) = 0.524(4)$	M1		One standardisation, equate to Φ^{-1} , not 0.758
		$\sigma = 10/0.5243$	B1		$\Phi^{-1} \in [0.524, 0.5245]$ seen
		= 19.084	A1	4	σ in range [19.07, 19.1], e.g. 19.073
7	(i)		M1		Horizontal line
	(-)		A1	2	Evidence of truncation
					[no need for labels]
		5 11			
	(ii)	$\mu = 8$	B1		8 only, cwd
		$\int_{5}^{11} \frac{1}{6} t^2 dt = \left[\frac{1}{18} t^3\right]_{5}^{11} [=67]$	M1		Attempt $\int kt^2 dt$, limits 5 and 11 seen
		$\left[\int_{5} \frac{1}{6} \iota u - \lfloor \frac{1}{18} \iota \rfloor_{5} \lfloor -0/ \rfloor \right]$	B1		k = 1/6 stated or implied
		$ -8^2$	M1	-	Subtract their (non-zero) mean ²
		= 3	A1	5	Answer 3 only, <i>not</i> from MF1
	(iii)	N(8, 3/48)	M1		Normal stated or implied
		$1 - \Phi\left(\frac{8.3 - 8}{\sqrt{3/48}}\right) = 1 - \Phi(1.2)$	A1		Mean 8
		$\left \frac{1-\Psi}{\sqrt{3/48}} \right ^{-1-\Psi(1,2)}$	A1		Variance their (non-zero) (ii)/48
		= 1 - 0.8848	M1		Standardise, \sqrt{n} , ignore sign or \sqrt{r} errors. cc:
					M0
		= 0.1151	Al		Answer, art 0.115
		Normal distribution only approx.	B1	6	Any equivalent comment, e.g. CLT used
8	(i)	$P(\le 4) = 0.0473$	M1		$P(\le r)$ from B(10, 0.7), $r = 3/4/5$, not N
		Therefore CR is ≤ 4	B1	•	"≤ 4" stated, not just "4", nothing else
		P(Type I error) = 4.73%	Al	3	Answer, art 0.0473 or 4.73%, must be stated
	(ii)	B(10, 0.4) and find P(> 4)	M1		Must be this, <i>not</i> isw, on (i)
		$1 - P(\leq 4)$	M1	•	Allow for 0.6177 or 0.1622
		= 0.3669	Al	3	Answer, art 0.367
	(iii)	0.5 × 0.3669	M1	•	$0.5 \times (ii)$
		= 0.18345	A1	2	Ans correct to 3 SF. e.g. 0.184 from 0.367

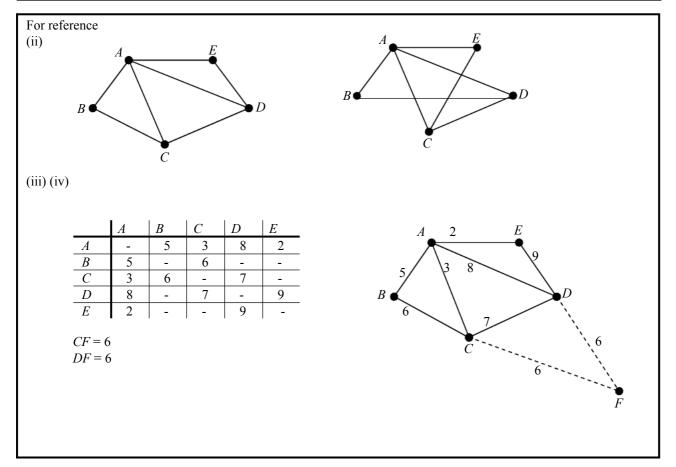
473	33	I	Mark Sc	cher	me January 2 January 2 Allow for 0.0038 or 0.0335 Answer, a.r.t. 0.0119	Status - UC
9	(i)	$1 - P(\le 7) = 1 - 0.9881$	M1	- -	Allow for 0.0038 or 0.0335	.0
	/	= 0.0119	Al	2		
	(ii)	Po(12)	M1	ļ	Po(12) stated or implied	
		$P(\le 14) - P(\le 12)$	M1	ļ	Formula, 2 consecutive correct terms, or tables, e.g0905 or .3104 or .1629	
		$\begin{bmatrix} 0.7720 - 0.5760 \end{bmatrix} = 0.196$	A1	3	Answer, art 0.196	
	(iii)	-0.190 Po(60) \approx N(60, 60)	- <u>M1</u>		N(60,)	
	(111)		A1	ļ	Variance or SD 60	
		$(695-60) - \pi(1220)$	M1	ļ	Standardise, $\lambda \& \sqrt{\lambda}$, allow λ or wrong or no	
		$\Phi\left(\frac{69.5-60}{\sqrt{60}}\right) = \Phi(1.226)$		ļ	cc	
			A1	ļ	$\sqrt{\lambda}$ and cc both correct	
		= 0.8899	A1	5	Answer 0.89 or a.r.t. 0.890	
-	(iv)	(a) $1 - e^{-3m}(1 + 3m)$	M1	1	M1 for one error, e.g. no "1 –", or extra term,	
	<u>``</u>	1	A1	2	or 0 th term missing; answer, aesf	
		(b) $m = 1.29$,	M1		Substitute 1.29 or 1.3 into appropriate fn	
		p = 0.89842	A1	ļ	<u>Comp 0.9 0.1 0</u>	
		m = 1.3, p = 0.9008	A1	ļ	1.29 0.898 0.1015800158	
				ļ	1.3 0.901 0.09918 0.008146	
		Straddles 0.9, therefore solution between 1.29 and 1.3	A1	4	Explicit comparison with relevant value, & conclusion, needs both <i>p</i> s correct	
	or		M1A1		Can be implied by at least 1.296	
	07	1.2965or better; conclusion stated	A1A1		Need at least 4 dp for M1A2	

January 20 Mathscloud.com

4734 Probability & Statistics 3

1(i)	$\int_{-a}^{0} \frac{2}{5} dx + \int_{0}^{\infty} \frac{2}{5} e^{-2x} dx = 1$	M1		Sum of probabilities =1
		A1		
	2a/5 + 1/5 = 1 a = 2	Al	3	
(;;)	u 2 			
(ii)	-	M1		$\Sigma \int \mathbf{x} f(\mathbf{x}) d\mathbf{x}$
	$\int_{-2}^{0} \frac{2}{5} x dx + \int_{0}^{\infty} \frac{2}{5} x e^{-2x} dx$			
	e e	A1 √		\sqrt{a}
	$\int_{-a}^{0} \frac{2}{5} x dx = -\frac{a^2}{5}$			
	$\int_{0}^{\infty} \frac{2}{5} x e^{-2x} dx = \left[-\frac{1}{5} x e^{-2x} \right] + \left[-\frac{1}{10} e^{-2x} \right]$	M1 A1		By parts with 1 part correct Both parts correct
		Al	5	CAO
	= - 0.7		[8]	
2(i)	4 cartons: Total, $Y \sim N(2016, 36)$	B1B1		Mean and variance
	$P(Y \le 2000) = \Phi(-16/\sqrt{36}) = 0.00383$	M1 A1	4	
(ii)	$\mathrm{E}(V) = 0$	B1		
	$Var(V) = 36 + 16 \times 9$	M1		
	= 180	A1	3	CWO
(iii)	0.5	B1	1 [8]	
3(i)	Normal distribution	B1		
	Mean $\mu_1 - \mu_2$; variance $2.47/n_1 + 4.23/n_2$	B1B1	3	
(ii)	H ₀ : $\mu_1 = \mu_2$, H ₁ : $\mu_1 \neq \mu_2$ (9.65 - 7.23)/ $\sqrt{(2.47/5 + 4.23/10)}$	B1 M1		Or find critical region
	(5.03 - 1.23)/(2.47/3+4.23/10)	B1		Numerator
	=2.527	A1		
	> 2.326	M1		Compare with critical value
	Reject H_0			SR1:If no specific comparison but CV and
	There is sufficient evidence at the 2% significance level that the means differ	A1		conclusion correct B1. Same in Q5,6,7 SR2: From CI: 2.42±zσ M1, σ correct
	-		6	z = 2.326 B1, (0.193, 4.647) A1
				0 in not in CI ; reject H_0 etc M1A1 Total 6 Conclusions not over-assertive in Q3, 5, 6
(iii)	Any relevant comment.	B1	1	e.g sample sizes too small for CLT to apply
			[10]	

4734	. Mark S	cheme		January 20 Dates
4(i)	$G(y)=P(Y \le y)=P(1/(1+V) \le y)$ =P(V \ge 1/y - 1) = 1 - F(1/y - 1) = $\begin{cases} 0 & y \le 0, \\ 8y^3 & 0 < y \le 1/2, \\ 1 & y > 1/2. \end{cases}$ g(y) = $\begin{cases} 24y^2 & 0 < y \le 1/2, \\ 0 & \text{otherwise.} \end{cases}$ $\overline{\int 24y^2/y^2 dy \text{ with limits}}$ =12	M1 A1 A1 B1 M1 A1 M1 A1	7	Use of F $8y^3$ obtained correctly Correct range. Condone omission of $y \le 0$ For G'(y) Correct answer with range $$
5(i) (ii)	Use $p_s \pm z \sqrt{(p_s q_s/200)}$ z=1.645 $s = \sqrt{(0.135 \times 0.865/200)}$ (0.0952, 0.1747) H ₀ : $p_1 - p_2 = 0$, H _i : $p_1 - p_2 > 0$ $\frac{27/200 - 8/100}{\sqrt{35/300 \times 265/300 \times (200^{-1} + 100^{-1})}}$ = 1.399 > 1.282 Reject H ₀ . There is sufficient evidence at the 10% significance level that the proportion of faulty bars has reduced	[9] M1 B1 A1 A1 B1 M1 B1 A1 A1 M1 A1	4	Or /199 (0.095, 0.175) to 3DP Or equivalent Correct form. Pooled estimate of $p = 35/300$ Correct form of sd OR: $P(z \ge 1.399) = 0.0809 < 0.10$ SR: No pooled estimate: B1M1B0B0 A1 for 1.514, M1A1 Max 5/7
6(i)	Assumes that decreases have a normal distn $H_{0:\mu_{O-F}} = 0.2 \text{ (or } \geq), H_{1}:\mu_{O-F} > 0.2$ O-F: 0.6 0.4 0.2 0.1 0.3 0.2 0.4 0.3 $\overline{D} = 0.3125$ $s^2 = 0.024107$ $(0.3125-0.2)/\sqrt{(0.024107/8)}$ = 2.049 > 1.895 Reject H _o – there is sufficient evidence at the 5% significance level that the reduction is more than 0.2	[11] B1 B1 B1 A1 M1 A1 M1 A1	9	B1 Use paired differences <i>t</i> -test Must have /8 OR: $P(t \ge 2.049) = 0.0398 < 0.05$ Allow M1 from $t_{14} = 1.761$ SR: 2-sample test:B1B1M0B1A0 M1 using 1.761 A0 Max 4/9
(ii)	$0.3125 \pm t \sqrt{(0.024107/8)} t = 2.365 (0.1827, 0.4423)$	M1 B1 A1 [12]	3	Allow with <i>z</i> but with /8 Rounding to (0.283, 0.442)


4734	4 Mark S	cheme	9	WWW. MY MAN January 26 For both hypotheses	132
				'NSOL	64
7(i)	H_0 :Vegetable preference is independent of gender H_1 : All alternatives	B1		For both hypotheses	
	E-Values 26 16.25 22.75 22 13.75 19.25 $\chi^2 = 5^2(26^{-1} + 22^1) + 7.25^2(16.25^{-1} + 13.75^{-1}) + 2.25^2(22.75^{-1} + 19.25^{-1})$ =9.641	M1 A1 M1 A1 A1		At least one correct All correct Correct form of any one All correct ART 9.64	
	9.64 > 5.991 Reject H ₀ , (there is sufficient evidence at the 5% that) vegetable preference and gender are not independent	M1 A1	8	OR: P(≥ 9.641)=0.00806 <0.05	
(ii)	(H ₀ : Vegetables have equal preference H ₁ : All alternatives) Combining rows: 48 30 42 E-Values: 40 40 40 $\chi^2 = (8^2+10^2+2^2)/40$	M1 A1 M1 A1			
	 = 4.2 4.2 < 4.605 Do not reject H₀, there is insufficient evidence at the 10% significance level of a difference in the proportion of preferred vegetables 	M1 A1 [14]	6	OR:P(≥ 4.2) = 0.122 > 0.10 AEF in context	

January 2. Mainscioud.com

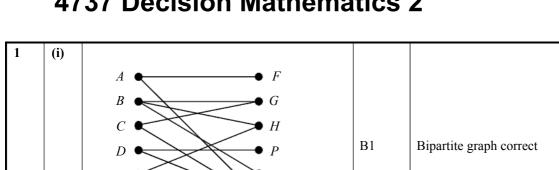
			TO BE ANSWERED ON INSERT	
(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1	Evidence of updating at <i>C</i> , <i>D</i> , <i>E</i> or <i>F</i> All temporary labels correct, with no extras	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1	All permanent labels correct	
	Path: $A - B - C - D - E - F$	B1	сао	
	Weight: 9	B1	cao	[5
(ii)	Total weight of all arcs = 25	B1	Total weight = 25 (may be implied from weight)	
	Only odd nodes are <i>B</i> and <i>E</i> . Least weight path joining <i>B</i> to <i>E</i> is $B - C - E = 3$.	M1	B to $E = 3$	
	Weight: 28 Route: (example)	A1	28 (cao)	
	A-B-D-F-E-C-B-C-D-E-D-C-A	B1	A valid closed route that uses <i>BC</i> , <i>CD</i> and <i>DE</i> twice and all other arcs once	[4
(iii)	A-B-E-F	B1	cao	\square
	Graph is now Eulerian, so no need to repeat arcs	B1	Eulerian (or equivalent)	[2
			Total =	11

4736 Decision Mathematics 1

2(i)A graph cannot have an odd number of odd vertices (nodes)B1Or equivalent (eg $3 \times 5 = 15 \Rightarrow 7/2 \operatorname{arcs})$ Not from a diagram of a specific case(ii)It has exactly two odd nodes egB12 odd nodeseg $CABCDEAD$ B1A valid semi-Eulerian trail(iii) $AE = 2$ $AC = 3$ $AB = 5$ $CD = 7$ $A \bigoplus_{E} D$ B1Order of choosing arcs in a valid application of Prim, starting at A (working shown on a network or matrix)Weight = 17B129 or 12 + their tree weight from (iii) $A - E - D - F - C - B - A$ $= 34$ $F - C - A - E - D$ and $F - D - C - A - E$	ww.nynath	AMA ASUS
eg $CABCDEAD$ B1A valid semi-Eulerian trail(iii) $AE = 2$ $AC = 3$ $AB = 5$ $CD = 7$ $A \bigoplus_{E} D$ B1Correct tree (vertices must be labelled)B1 $Order of choosing arcs in a validapplication of Prim, starting at A(working shown on a network or matrix)B1Order of choosing arcs in a validapplication of Prim, starting at A(working shown on a network or matrix)(iv)Lower bound = 29A-E-D-F-C-B-A= 34B129 or 12 + their tree weight from (iii)A-E-D-F-C-A134, from correct working seen$	[1]	·Con
$AC = 3$ $AB = 5$ $CD = 7$ $A \frown C \rightarrow D$ B1Correct tree (vertices must be labelled)B1 $CD = 7$ $B1$ Order of choosing arcs in a valid application of Prim, starting at A (working shown on a network or matrix)Weight = 17B1 17 (iv)Lower bound = 29 $A - E - D - F - C - B - A$ $= 34$ B129 or 12 + their tree weight from (iii) $A - E - D - F - C - B - A$ $A1$	[2]	
$ \begin{vmatrix} A - E - D - F - C - B - A \\ = 34 \end{vmatrix} $ M1 $ \begin{vmatrix} A - E - D - F - C - \\ A1 \end{vmatrix} $ A - E - D - F - C - A1 $ \begin{vmatrix} A - E - D - F - C - \\ A1 \end{vmatrix} $ A, from correct working seen	[3]	
P = C = A = E = D and $P = D = C = A = E$ B1Contently explaining with include rans, need to have explicitly considered both cases	[4]	

4736	Mark SchemeJanuary 2 $x =$ number of clients who use program X y = number of clients who use program YB1Number of clients on X and Y,								
3 (i)	x = number of clients who use program $Xy =$ number of clients who use program Y	B1	Number of clients on <i>X</i> and <i>Y</i> , respectively	[1]					
(ii)	Spin cycle: $30x + 10y \le 180$ $\Rightarrow 3x + y \le 18$ Rower: $10x \le 40$	B1	$3x + y \le 18$, or equivalent, simplified						
	$\Rightarrow x \leq 4$	B1	$x \le 4$, or equivalent, simplified						
	Free weights: $20x + 30y \le 300$ $\Rightarrow 2x + 3y \le 30$	B1	$2x + 3y \le 30$, or equivalent, simplified	[3]					
			Allow use of slack variables instead of inequalities						
(iii)	Both must take non-negative integer values	B1	Non-negative and integer	[1]					
			Accept $x + y \le 12$ as an alternative answer						
(iv)		B1 M1 A1	Axes scaled and labelled appropriately (on graph paper) Boundaries of their three constraints shown correctly (non-negativity may be missed) Correct graph with correct shading or feasible region correct and clearly identified (non-negativity may be missed) (cao)	[3]					
	Checking vertices or using a profit line $(4, 6) \rightarrow 72$		Follow through their graph if possible						
	$(3\frac{3}{7}, 7\frac{5}{7}) \to 77\frac{1}{7}$ or $(24/7, 54/7) \to 77\frac{1}{7}$	M1	x = 3.4, y = 7.7 may be implied from (3, 8)						
	$(0, 10) \to 60 \ (4, 0) \to 36$		may be implied from (5, 6)						
	Checking other feasible integer points near (non-integer) optimum for continuous problem $(3, 8) \rightarrow 75$	M1	Could be implied from identifying point (3, 8) in any form						
	Put 3 clients on program <i>X</i> , 8 on program <i>Y</i>	A1	cao, in context and including program Z						
	and 1 on program Z		Total =	[3] 11					

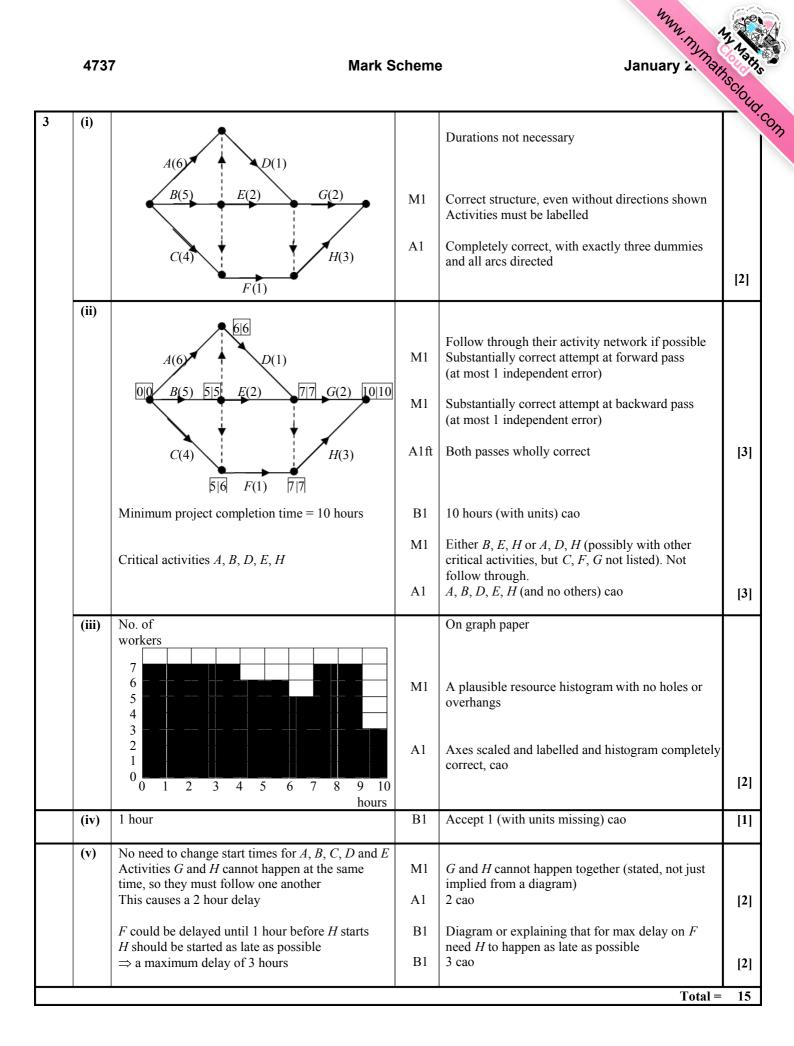
4736	Mark Sc	a January	N. T. STATISCIOL	
4 (i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 M1 M1 A1	 15 A's, 4 D's, 3 C's, 8B's (but not just A D C B) Three boxes each containing A A A A A (or shown using weights) A box containing all the rest Completely correct, including order of packing into boxes 	
	Cannot fit all the items into box 4 There is only room for one <i>B</i> in a box	B1	Any identification of a (specific) volume conflict	[5]
(ii)	B B B B B B B B C C C D D D A	B1	8 <i>B</i> 's, 3 <i>C</i> 's, 4 <i>D</i> 's, 15 <i>A</i> 's (but not just <i>B C D A</i>)	
	Box 1BDAABox 2BDAABox 3BDAABox 4BDAABox 5BAAABox 6BABox 7BBox 8BBox 9CCCC	M1 M1 A1 B1	 Four boxes each containing <i>B D A A</i> (in any order) Using exactly 9 boxes, the first eight of which each contain a <i>B</i> (with or without other items) and the ninth contains three <i>C</i>'s. Completely correct, including order of packing into boxes Any identification of a (specific) weight 	
(iii)	More than five A's is too heavy for one box Items may be the wrong shape for the boxes	B1	conflict Reference to shape, height, etc. but not	[5]
	eg too tall		practical issues connected with the food	[1]
	1	1	Total =	11


Item type	A	В	С	D
Number to be packed	15	8	3	4
Length (cm)	10	40	20	10
Width (cm)	10	30	50	40
Height (cm)	10	20	10	10
Volume (cm ³)	1 000	24 000	10 000	4 000
Weight (g)	1 000	250	300	400

1736	Mark Scheme Janua						
5 (i)	$a+b-c \ge 14$ $\Rightarrow (20-x) + (10-y) - (8-z) \ge 14$	(given)	B1	e January (Constant has no effect on slope of objective) Replacing a , b and c in objective to get $-2x + 3y - z$ (Condone omission of conversion to maximisation here)			
	$-2a + 3c \le 50$ $\Rightarrow -2(20-x) + 3(8-z) \le 50$ $\Rightarrow 2x - 3z \le 66$	(given) (given)	M1	Replacing a , b and c in the first three constraints to get given expressions			
	$10 + 4a \ge 5b$ $\Rightarrow 10 + 4(20 - x) \ge 5(10 - y)$ $\Rightarrow 4x - 5y \le 40$ $a \le 20 \Rightarrow 20 - x \le 20 \Rightarrow x \ge 0$ $b \le 10 \Rightarrow 10 - y \le 10 \Rightarrow y \ge 0$ $c \le 8 \Rightarrow 8 - z \le 8 \Rightarrow z \ge 0$	(given)	A1	Showing how $a \le 20, b \le 10, c \le 8$ give $x \ge 0, y \ge 0, z \ge 0$	[3]		
(ii)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	u RH 0 0 0 8 0 66 1 40	M1 A1	Constraint rows correct, with three slack variable columns Objective row correct	[2]		
	x and z columns have negative entries i objective row, but z column has no pos entries in constraint rows, so pivot on x 8+1=8; $66+2=33$; $40+4=10$	sitive x col	M1	Choosing to pivot on <i>x</i> column (may be implied from pivot choice) Calculations seen or referred to and correct			
	Least ratio is $8 \div 1$, so pivot on 1 from x New row 2 = row 2 New row 1 = row 1 + 2(new row 2) New row 3 = row 3 - 2(new row 2)	col	M1	pivot choice made (cao) Pivot row unchanged (may be implied) or follow through for their +ve pivot	[2]		
	New row 4 = row 4 - 4(new row 2) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	u RH 0 16 0 8 0 50	MI	Calculations for other rows shown (cao) An augmented tableau with three basis columns, non-negative values in final column and value of objective having not decreased	[2]		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 8	- A1 B1	Correct tableau after one iteration (cao) Non-negative values for x , y and z from their tableau	[2]		
	$x = 8 \Rightarrow a = 20 - 8 = 12$ $y = 0 \Rightarrow b = 10 - 0 = 10$		M1	Putting their values for x, y and z into a = 20 - x, $b = 10 - y$ and $c = 8 - z$			
	$z = 0 \Rightarrow c = 8 - 0 = 8$		A1	Correct values for a , b and c , from their non-negative x , y and z	[3]		
(iii)	$x \le 20, \ y \le 10 \text{ and } z \le 8$		M1 A1	20, 10, 8 Correct inequalities for x , y and z	[2]		

4736	Mark S	chem	e January TO BE ANSWERED ON INSERT	2. 779
			TO BE ANSWERED ON INSERT	
6 (i)	$10 \frac{1}{2n(n-1)}$	B1 B1	10 1+2++(n -1) seen, or equivalent Check that sum stops at n -1 not n	[2]
(ii)(:		B1	Their 10 minus 1	
	1 2	M1	1, 2 and 3	
	3 45	A1	45 following from method mark earned cao	[3]
(b) $1+2+3+\ldots+(N-1)$	M1	$1+2+3++(N-1)$ or $\frac{1}{2}N(N-1)$,	
	$= \frac{1}{2}N(N-1), \text{ where } N = \frac{1}{2}n(n-1)$ = $\frac{1}{4}n(n-1)(\frac{1}{2}n(n-1)-1)$ (given)	A1	where $N = \frac{1}{2}n(n-1)$ Convincingly achieving the given result	[2]
(iii)	M1 Vertices in treeM2 Arcs in treeM3 Vertices not in treeM4 Sorted list $D E$ $D 2 E$ $ABCDE$ $D E$ $D 2 E$ ABC $D E A$ $D 2 E$ $B C$ $A 3 E$ $B C$ $D E A C$ $D 2 E$ $B C$ $A 3 E$ $B 6 E$ $D EACB$ $D 2 E$ $B 6 E$ $D EACB$ $D 2 E$ $B 6 E$ $A 4 C$ $B 6 E$	M1 M1 M1 A1	(Order of entries in <i>M1</i> , <i>M2</i> and <i>M3</i> does not matter) Arc $\underline{A \mid 3 \mid E}$ is added to <i>M2</i> , <i>A</i> is added to <i>M1</i> and deleted from <i>M3</i> Arc $\underline{A \mid 4 \mid C}$ is added to <i>M2</i> , <i>C</i> is added to <i>M1</i> and deleted from <i>M3</i> Arc $\underline{C \mid 5 \mid D}$ is not added to <i>M2</i> and arc $\underline{B \mid 6 \mid E}$ is added to <i>M2</i> cao (lists <i>M1</i> , <i>M2</i> and <i>M3</i> totally correct, ignore what is done in list <i>M4</i>).	[4]
(iv)	$30 \times \left(\frac{500}{100}\right)^4$	M1	Or equivalent	
	(100) = 18750 seconds	A1	cao, with units (312 min 30 sec or 5 hours 12 min 30 sec)	[2]
			Total =	13

January 2. Mainscioud.com



			Total =	
	Science did not arise	B1	S (cao)	
(iii)	Andy=foodBeth=televisionChelsey=geographyDean=politicsElly=history	B1	A = F, C = G, D = P and $E = H$ (cao) ($B = T$ may be omitted)	_
	Andy = food Beth = science Chelsey = geography Dean = television Elly = history	A1 B1	B = S, C = G and $D = T$ written down A = F, E = H written down	
	$E \bullet S$ $D = T - C = G - B = S$	M1	This alternating path written down, not read off from labels on graph	
(ii)	$A \bullet \qquad \bullet F$ $B \bullet \qquad \bullet G$ $C \bullet \qquad \bullet H$ $D \bullet \qquad [\bullet P]$	B1	A new bipartite graph showing the pairings AF, BG, CT and EH but not DS	1
	C C E E C C C C C C C C C C C C C C C C	B1	Bipartite graph correct	
	$A \bullet F$ $B \bullet G$			

47	737		Mark Scheme	January 2	thisclo
	Add a dummy row				
	P	R S T			
	April 30	28 32 25			
	May 32	34 32 35	B1	Adding a dummy row of all equal values	
	June 40	40 39 38			
	Dummy 40	40 40 40			
	Reduce rows				
	5	3 7 0	M1	Substantially correct attempt to reduce matrix (condone 1 numerical slip)	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(condone i numerical sup)	
	$\frac{2}{0}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1	Correct reduced cost matrix from reducing rows	
	Columns are already			first and statement of how table was formed,	[3
	Columns are uncady i	louuoou		including reference to columns (cao)	
	Incomplete matching,	cross through zero	s		
	5	3 7 0			
	0	2 0 3	B1	Cross through zeros using minimum number of	
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		lines	
	Augment by 1 <u>4</u> <u>0</u> 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1	Correct augmented matrix and statement of how	[2
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		table was formed (cao)	
	1				
	Complete matching	R S T			
		R S T 2 6 0			
	April 4 May 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	June 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	Dummy 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	April = Tall Trees	£2500			
	May = Palace	£3200	B1	A = T, M = P, J = S (cao)	
	June = Sunnyside	£3900			
	Total cost = $\pounds 9600$		DI		
	$10tal \cos t = 19000$		B1	£9600 (cao) with units	[2

January 2

473	7 Mark S	schem	e January 2 Painse
(i)	$(0; 0) \underbrace{\begin{array}{c} (1; 0) & 6 & (2; 0) \\ 9 & 7 & 10 \\ 7 & 6 & 7 & 10 \\ (1; 1) & 8 & (2; 2) \end{array}}_{(1; 1) & 8 & (2; 2)} (3; 0)$	B1 M1 A1	Correct structure (vertex labels and graph correct) Assigning weights to their graph (no more than 1 error or no more than 2 arcs missing/extra) Completely correct network
(ii)	Maximin	B1	cao
(iii)	Stage State Action Working Suboptimal maximin 2 0 10 10 10 2 0 10 10 10 2 0 10 10 10 1 0 min(6,10) = 6 1 10 1 0 min(6,10) = 7 8 8 0 0 min(6,10) = 6 1 1 min(7,10) = 7 2 min(8,10) = 8 8 0 0 0 min(9,8) = 8 8 0 0 0 min(9,8) = 8 8 1 min(7,8) = 7 1	B1 B1 B1 M1 A1 M1 A1 B1 B1	Four or five columns, including 'stage', 'state' and 'action' Stage and state columns completed correctly Action column completed correctly Min values correct for stage 1 Suboptimal maximin values correct for stages 2 and 1 (follow through their network if possible, no more than 2 arcs missing/extra) Min values correct for stage 0 Maximin value for stage 0 (follow through their network if possible, no more than 2 arcs missing/extra) 8, cao Correct route, or in reverse

SR		Specia	al ruling	g for wo	orking forwards				
	(iii)	Stage	State	Action	Working	Suboptimal maximin	B1	Four or five columns, including 'stage', 'state'	
		1	0	0 0	9 7	9 7	B0 B0	and 'action'	[2]
			0	0 1	min(9, 6) = 6 min(7, 6) = 6	6	M1	No follow through from incorrect networks Min values correct for stage 2	[3]
		2	1	0 1	min(9, 7) = 7 min(7, 7) = 7	7		and suboptmal maximin values correct for stages 1 and 2 (cao)	
			2	0 1	min(9, 8) = 8 min(7, 8) = 7	8	A0		[2]
		3	0	0 1 2	min(6,10) = 6 min(7,10) = 7 min(8,10) = 8		M1	No follow through from incorrect networks Correct min values for stage 3 and maximin value for stage 3 (cao)	[2]
							A0		[-]
		U U			ruck = 8 tonnes 0) $- (1; 0) - (2; 0)$		B1 B1	8, cao Correct route, or in reverse	[2]
								Maximum = B1 M1 M1 B1 B1 = 5 marks out of 9	

473	7 Mark S	Schem	e January 2. A	th _{scio}
(i)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M1 M1	e January 2 Calculating row minima (cao) Calculating column maxima (or their negatives) (cao)	
	Play-safe for Robbie is fairy Play-safe for Conan is hag	A1 A1	Fairy or F (not just -1 or identifying row) Hag or H (not just ± 1 or identifying column)	
	Robbie should choose the elf	B1	Follow through their play-safe for Conan Elf or E	[5]
(ii)	Dwarf: $\frac{1}{3}[(-1) + (-4) + (2)] = -1$ Elf: $\frac{1}{3}[(3) + (1) + (-4)] = 0$ Fairy: $\frac{1}{3}[(1) + (-1) + (1)] = \frac{1}{3}$	M1 A1	$D = -1$ or $F = \frac{1}{3}$ or -3, 0, 1 All three correct	[2]
(iii)	Goblin: $3p + (1-p) = 1 + 2p$ Hag: $p - (1-p) = 2p - 1$ Imp: $-4p + (1-p) = 1 - 5p$	M1 A1	Any one correct (in any form) All three correct (in any form)	[2]
	2p - 1 = 1 - 5p $\Rightarrow p = \frac{2}{7}$	M1 A1	Appropriate equation seen for their expressions $\frac{2}{7}$ or 0.286 (or better) from method seen	[2]
(iv)	4 is added throughout the table to make all the entries non-negative If Conan chooses the goblin, this gives an expected value (in the new table) of $3x + 7y + 5z$	B1 B1	Add 4 to remove negative values Expected value when Conan chooses the goblin	[2]
(v)	$z = \frac{5}{7} \implies m \le 5.571, \ m \le 3.571, \ m \le 3.571$ $\implies m \le 3.571 \ (3\frac{4}{7}) \ (\frac{25}{7})$	M1	Using $z = \frac{5}{7}$ to find a value for <i>m</i> (or implied)	
	Hence, maximum value for <i>M</i> is $3.571 - 4$ = -0.429 or $-\frac{3}{7}$	M1 A1	Subtacting 4 from their <i>m</i> value cao	[3]

4737	7 Mark S	chem	e January 2	th _{SCIO}
(i)	α = 12 litres per second β = 15 litres per second	B1 B1	12 15	[2
(ii)	At least 3 litres per second must flow into A , so AC and AF cannot both have flows of 1	B1	At least 3 flows along SA	[1
(iii)	At most 4 litres per second can flow into <i>B</i> , and at least 4 must flow out, so <i>BC</i> and <i>BD</i> must have flows of 2	B1	At <i>B</i> : flow in ≤ 4 (and flow out ≥ 4) hence given flows in <i>BC</i> and <i>BD</i>	
	Hence, only 2 litres per second flows into D and at least 2 litres per second must flow out, so DE and DT must both be at their lower capacities	B1	Stating that flow into D is 2 and hence given flows in DE and DT	[2]
(iv)	Flow across $\{S, A, B, C\}$, $\{D, E, F, G, T\} \ge 11$ (so 10 litres per second is impossible)	M1 A1	Or any equivalent reasoning (eg flow through <i>C</i>) Wholly convincing argument	
	Minimum = 11 eg $A \xrightarrow{1} F$	M1	11	[2
	$S \xrightarrow{3}{4} \begin{array}{c} 2 \\ 2 \\ 3 \\ 4 \\ 2 \\ 3 \\ 4 \\ 0 \\ E \end{array} \xrightarrow{6} T$	A1	Showing that 11 is possible (check <i>C</i>)	[2
	B = 2 D = 2 Maximum = 12 No more than 12 can cross cut α and 12 is	M1	12	
	possible, eg augment flow shown above by 1 litre per second along <i>SAFT</i>	A1	Showing that 12 is possible but 13 is not	[2]
(v)	e.g A 2 F	B1	A correct reduced network (vertex <i>E</i> and all arcs incident on <i>E</i> deleted), including arc capacities Or putting E_{in} and E_{out} with a capacity of 0 between them Or giving <i>CE</i> , <i>EG</i> and <i>DE</i> upper and lower capacities of 0	
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	M1	On same diagram or a new diagram SA = 3, $SC = 2$, $SB = 4$, $BC = 2$ and $BT = 2$ (and nothing through <i>E</i> , if shown)	
		A1	A valid flow of 9 litres per second through the network	[3

Grade Thresholds

Advanced GCE Mathematics (3890-2, 7890-2) January 2010 Examination Series

Unit Threshold Marks

78	92	Maximum Mark	Α	В	С	D	E	U
4721	Raw	72	56	48	41	34	27	0
4721	UMS	100	80	70	60	50	40	0
4722	Raw	72	61	53	46	39	32	0
4722	UMS	100	80	70	60	50	40	0
4723	Raw	72	51	43	36	29	22	0
4723	UMS	100	80	70	60	50	40	0
4724	Raw	72	55	47	39	32	25	0
4724	UMS	100	80	70	60	50	40	0
4725	Raw	72	62	54	46	38	31	0
4725	UMS	100	80	70	60	50	40	0
4726	Raw	72	53	46	39	32	25	0
4720	UMS	100	80	70	60	50	40	0
4727	Raw	72	55	47	40	33	26	0
4/2/	UMS	100	80	70	60	50	40	0
4728	Raw	72	52	44	36	28	21	0
4720	UMS	100	80	70	60	50	40	0
4729	Raw	72	56	48	41	34	27	0
4725	UMS	100	80	70	60	50	40	0
4730	Raw	72	51	44	37	30	24	0
4730	UMS	100	80	70	60	50	40	0
4732	Raw	72	54	47	40	33	26	0
4/32	UMS	100	80	70	60	50	40	0
4733	Raw	72	62	53	44	35	26	0
4/33	UMS	100	80	70	60	50	40	0
4734	Raw	72	58	50	42	35	28	0
4/34	UMS	100	80	70	60	50	40	0
4736	Raw	72	47	40	34	28	22	0
4/30	UMS	100	80	70	60	50	40	0
4737	Raw	72	51	45	39	33	28	0
4131	UMS	100	80	70	60	50	40	0

www.mymathscloud.com

Specification Aggregation Results

	Maximum Mark	Α	В	С	D	Е	U
3890	300	240	210	180	150	120	0
3891	300	240	210	180	150	120	0
3892	300	240	210	180	150	120	0
7890	600	480	420	360	300	240	0
7891	600	480	420	360	300	240	0
7892	600	480	420	360	300	240	0

www.mymathscloud.com

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
3890	28.2	53.1	73.0	87.2	96.4	100	1385
3892	39.2	61.7	79.2	92.5	97.5	100	126
7890	30.8	60.1	83.8	95.0	99.3	100	459
7892	21.1	60.5	84.2	100	100	100	43

For a description of how UMS marks are calculated see: <u>http://www.ocr.org.uk/learners/ums/index.html</u>

Statistics are correct at the time of publication.

List of abbreviations

Below is a list of commonly used mark scheme abbreviations. The list is not exhaustive.

AEF	Any equivalent form of answer or result is equally acceptable
AG	Answer given (working leading to the result must be valid)
CAO	Correct answer only
ISW	Ignore subsequent working
MR	Misread
SR	Special ruling
SC	Special case
ART	Allow rounding or truncating
CWO	Correct working only
SOI	Seen or implied
WWW	Without wrong working
Ft or √	Follow through (allow the A or B mark for work correctly following on from
	previous incorrect result.)

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General) Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

66

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2010